Modeling and Performance Analysis of Combined-Cycle Based Ship Power Plant

2010 ◽  
Vol 44-47 ◽  
pp. 1240-1245 ◽  
Author(s):  
Hong Zeng ◽  
Xiao Ling Zhao ◽  
Jun Dong Zhang

For combined-cycle power plant performance analysis, a ship power plant mathematical model is developed, including diesel engine, controllable pitch propeller, exhaust gas boiler, turbine generator and shaft generator models. The simulation performance characteristic curves of diesel engine under various loads are given. Comparison of simulation results and experimental data shows the model can well predict the performance of diesel engine in various operating conditions. The specific fuel oil consumption contours of combined-cycle power plant and the relations between engine operating conditions and steam cycle parameters are given. The influence of diesel engine operating conditions to the overall performance of combined-cycle power plant is discussed.

2004 ◽  
Vol 126 (1) ◽  
pp. 28-34 ◽  
Author(s):  
Stan N. Danov ◽  
Ashwanti K. Gupta

In this two-part series publication, a mathematical model of the energy conversion process in a diesel engine based combined-cycle power plant has been developed. The examined configuration consists of a turbocharged diesel engine (the topping cycle), a heat recovery steam generator (HRSG) and a steam turbine plant (the bottoming cycle). The mathematical model describes the processes that occur simultaneously in the diesel engine cylinders, turbocharger, air filter, air inlet pipes, exhaust pipes, HRSG, steam turbine, and the associated auxiliary equipment. The model includes nonlinear differential equations for modeling the energy conversion in the diesel engine cylinders, fuel combustion, gas exchange process, energy balance in the turbocharger, inlet pipes and exhaust system, heat balance in the HRSG, and steam turbine cycle. The fifth-order Kuta-Merson method has been applied for numerical solution of these simultaneous equations via an iterative computing procedure. The model is then used to provide an analysis of performance characteristics of the combined-cycle power plant for steady-state operation. The effect of change in the major operating variables (mutual operation of diesel engine, HRSG, and steam turbine) has been analyzed over a range of operating conditions, including the engine load and speed. The model validation and the applications of the model are presented in Part II (Results and Applications) of this two-part series publication.


Author(s):  
Koen-Woo Lee ◽  
Hwan-Doo Kim ◽  
Sung-Il Wi ◽  
Jean-Pierre Stalder

This paper presents and discusses the successful operating experience and the issues related to burning low sulphur waxy residual (LSWR) fuel oil at the 507 MW IPP Daesan Combined Cycle Power Plant. The power plant was built and is operated by Hyundai Heavy Industries (HHI). It comprises four Siemens-Westinghouse 501D5 engines, each with a heat recovery boiler including supplementary firing and one steam turbine. This plant, commissioned in 1997, is designed to burn LSWR fuel oil. LSWR fuel oil was selected because of the lower fuel cost as compared to LNG and other liquid fuels available in Korea. By adding a combustion improver to the LSWR fuel oil it is possible for HHI to comply with the tight Korean environmental regulations, despite the tendency for heavy smoke and particulate emissions when burning this type of fuel oil. The successful operating experience, availability, reliability and performance achieved in Daesan, as well as the commercial viability (which by far offsets the additional capital expenditure and the additional related O&M costs) demonstrate that LSWR fuel oil firing in heavy duty gas turbines is rewarding. This is especially important in view of the growing disposal problems of residuals at refineries around the world.


2021 ◽  
Vol 347 ◽  
pp. 00003
Author(s):  
Rushavya Naidu ◽  
Wim Fuls

The objective of this project was to develop a model of a combined-cycle power plant in Flownex which can be solved in off-design conditions in order to compare it to plant data. The verification of this model will show that Flownex can be used to effectively and efficiently model a combined-cycle power plant. The process of development of the final Flownex model was achieved using various additional software. Initially, an analytical model was developed in Mathcad (software used for engineering calculations). Thereafter, a model was built in Virtual Plant, a thermodynamic modelling software for assessing plant performance. Finally, the Flownex model was designed. For the single, double, and triple pressure combined-cycle power plant systems, the analytical, Virtual Plant and Flownex models were compared. The results of all the models agreed closely with one another. The triple-pressure design and off-design Virtual Plant and Flownex models were also compared to plant data and it was concluded that Flownex was successful in modelling the design and offdesign conditions of a combined-cycle power plant.


Author(s):  
Ifeanyi Henry Njoku ◽  
Chika Oko ◽  
Joseph Ofodu

Abstract: This paper presents the thermodynamic performance analysis of an existing combined cycle power plant to be retrofitted with a waste heat driven aqua lithium bromide absorption refrigerator for cooling the inlet air streams to the compressor and air-cooled steam condenser. The power plant is located in the hot and humid tropical region of Nigeria, latitude 4°45′N and longitude 7°00′E. This was achieved by performing energy and exergy analysis of the integrated system. Using the operating data of the existing combined cycle power plant, the results of the analysis showed that by cooling the inlet air streams to 15oC at the compressors, and to 29oC at the air-cooled steam condenser, the net power output, thermal and exergy efficiencies of the combined cycle plant increased by 7.7%, 8.1% and 7.5% respectively while the plant total exergy destruction rate and specific fuel consumption dropped by 10.8% and 7.0% respectively. The stack flue gas exit temperature reduced from 126oC to 84oC in the absorption refrigerator, thus reducing the environmental thermal pollution. The COP and exergy efficiency of the refrigeration cycle was 0.60 and 27.0%, respectively. Results also show that the highest rate of exergy destruction in the combined cycle power plant occurred in the combustion chamber while the highest rate of exergy destruction in the absorption refrigeration cycle occurred in the evaporator followed by the absorber.


Author(s):  
Emad Hamid ◽  
Mike Newby ◽  
Pericles Pilidis

The high thermal efficiency and the use of low carbon content fuel (e.g., natural gas) have made the Combined Cycle Power Plant (CCPP) one of the best choices for power generation due to its benefits associate with low cost and low environmental impact. The performance of Unfired Steam Cycle (USC) as a part of the CCPP has significant impact on the performance of the whole power plant as it provides the CCPP with around one third of the total useful power. An accurate performance simulation of the USC is therefore necessary to analyze the effects of various operating parameters on the performance of combined cycle power plant. In this paper, a performance simulation approach for an unfired steam cycle using single and dual pressure-level of an OTSG is presented. The developed modeling method has been applied to the performance simulation of an existing unfired steam cycle power generation unit installed at Manx Electricity Authority and the results are promising. A comparison between simulated and actual performance at design and off design operating conditions of the same USC has shown a remarkable agreement with errors values below 1%.


Sign in / Sign up

Export Citation Format

Share Document