scholarly journals Calculation of digital tracking systems of combined control using a limiting continuous model. Part II. Calculation of the digital tracking system

2019 ◽  
Vol 62 (7) ◽  
pp. 602-609
Author(s):  
A.I. Ermolenko ◽  
A.I. Korshunov
2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Fatima Ameen ◽  
Ziad Mohammed ◽  
Abdulrahman Siddiq

Tracking systems of moving objects provide a useful means to better control, manage and secure them. Tracking systems are used in different scales of applications such as indoors, outdoors and even used to track vehicles, ships and air planes moving over the globe. This paper presents the design and implementation of a system for tracking objects moving over a wide geographical area. The system depends on the Global Positioning System (GPS) and Global System for Mobile Communications (GSM) technologies without requiring the Internet service. The implemented system uses the freely available GPS service to determine the position of the moving objects. The tests of the implemented system in different regions and conditions show that the maximum uncertainty in the obtained positions is a circle with radius of about 16 m, which is an acceptable result for tracking the movement of objects in wide and open environments.


2020 ◽  
Vol 10 (14) ◽  
pp. 4948
Author(s):  
Marcel Neuhausen ◽  
Patrick Herbers ◽  
Markus König

Vision-based tracking systems enable the optimization of the productivity and safety management on construction sites by monitoring the workers’ movements. However, training and evaluation of such a system requires a vast amount of data. Sufficient datasets rarely exist for this purpose. We investigate the use of synthetic data to overcome this issue. Using 3D computer graphics software, we model virtual construction site scenarios. These are rendered for the use as a synthetic dataset which augments a self-recorded real world dataset. Our approach is verified by means of a tracking system. For this, we train a YOLOv3 detector identifying pedestrian workers. Kalman filtering is applied to the detections to track them over consecutive video frames. First, the detector’s performance is examined when using synthetic data of various environmental conditions for training. Second, we compare the evaluation results of our tracking system on real world and synthetic scenarios. With an increase of about 7.5 percentage points in mean average precision, our findings show that a synthetic extension is beneficial for otherwise small datasets. The similarity of synthetic and real world results allow for the conclusion that 3D scenes are an alternative to evaluate vision-based tracking systems on hazardous scenes without exposing workers to risks.


Sign in / Sign up

Export Citation Format

Share Document