scholarly journals Approximate analytical method for finding eigenvalues of Sturm-Liouville problem with generalized boundary condition of the third kind

2020 ◽  
Vol 11 (3) ◽  
pp. 275-284
Author(s):  
V.D. Lukyanov ◽  
D.A. Bulekbaev ◽  
A.V. Morozov ◽  
L.V. Nosova
2006 ◽  
Vol 11 (1) ◽  
pp. 47-78 ◽  
Author(s):  
S. Pečiulytė ◽  
A. Štikonas

The Sturm-Liouville problem with various types of two-point boundary conditions is considered in this paper. In the first part of the paper, we investigate the Sturm-Liouville problem in three cases of nonlocal two-point boundary conditions. We prove general properties of the eigenfunctions and eigenvalues for such a problem in the complex case. In the second part, we investigate the case of real eigenvalues. It is analyzed how the spectrum of these problems depends on the boundary condition parameters. Qualitative behavior of all eigenvalues subject to the nonlocal boundary condition parameters is described.


2007 ◽  
Vol 12 (2) ◽  
pp. 215-226 ◽  
Author(s):  
Sigita Pečiulytė ◽  
Artūras Štikonas

Positive eigenvalues and corresponding eigenfunctions of the linear Sturm‐Liouville problem with one classical boundary condition and another nonlocal two‐point boundary condition are considered in this paper. Four cases of nonlocal two‐point boundary conditions are analysed. We get positive eigenfunctions existence domain for each case of these problems. This domain depends on the parameters of the nonlocal boundary problem and it gives necessary and sufficient conditions for existing positive eigenvalues with positive eigenfunctions.


2019 ◽  
Vol 4 (2) ◽  
pp. 305-314 ◽  
Author(s):  
Hülya Gültekin Çitil

AbstractIn this paper is studied a fuzzy Sturm-Liouville problem with the eigenvalue parameter in the boundary condition. Important notes are given for the problem. Integral equations are found of the problem.


Author(s):  
R. Peierls

In the following I discuss the properties, in particular the completeness of the set of eigenfunctions, of an eigenvalue problem which differs from the well-known Sturm-Liouville problem by the boundary condition being of a rather unusual type.The problem arises in the theory of nuclear collisions, and for our present purpose we take it in the simplified formwhere 0 ≤ x ≤ 1. V(x) is a given real function, which we assume to be integrable and to remain between the bounds ± M, and W is an eigenvalue. The eigenfunction ψ(x) is subject to the boundary conditionsand


Sign in / Sign up

Export Citation Format

Share Document