scholarly journals The ''rolling up'' effect of platinum layer obtained on nickel surface by interaction with solution of H2PtCl6 and its electrocatalytic properties in hydrogen evolution reaction during water electrolysis in alkaline medium

2021 ◽  
Vol 12 (5) ◽  
pp. 630-633
Author(s):  
M.V. Kaneva ◽  
V.P. Tolstoy
Author(s):  
Nguyen Thi Cam Ha ◽  
Nguyen Huu Tho ◽  
Nguyen Van Thuc ◽  
Huynh Thi Lan Phuong

Several kinds of electrocatalyst based on platinum, palladium, and nickel with glassy carbon substrate were successfully synthesized by electrodeposition method, and then applied for water electrolysis in alkaline media. Surface morphology of materials was investigated with scanning electron microscopy method. Energy-dispersive X-ray spectroscopy was used to find the content of each metal in bimetallic materials. The result showed that the number of noble metals was moderately decreased while the catalytic activities were slightly better than pure metal electrodes. Linear sweep voltammetry measurement was taken in KOH 1M solution to find the overvoltage of hydrogen evolution reaction and cyclic voltammetry method in 0.01M K3[Fe(CN)6]: 0.01M K4[Fe(CN)6] in 0.1M KOH was used to determine the reversible capacity of material electrodes. The linear sweep voltammetry measurements confirmed that the activities of new catalysts are higher than the origin materials. The binary catalyst of Pt-Ni can replace platinum for hydrogen evolution reaction in alkaline medium. Notably, the replacement of platinum atoms with palladium and nickel atoms, and the combination of good properties of them leads to improve the catalytic activity, and in the same time to decrease the catalyst cost. Once again, the electrochemical parameters open up a new prospect for the hydrogen produce.


2021 ◽  
Author(s):  
Aleksandar Jovanović ◽  
Lazar Bijelić ◽  
Ana Dobrota ◽  
Natalia Skorodumova ◽  
Slavko Mentus ◽  
...  

Energy-efficient hydrogen production is one of the key factors for advancing the hydrogen-based economy. Alkaline water electrolysis is the main route for the production of high-purity hydrogen, but further improvements of hydrogen evolution reaction (HER) catalysts are still needed. Industrial alkaline electrolysis relies on Ni-based catalysts, and here we describe a drastic improvement of HER activity of Ni in alkaline media using several model catalysts for HER obtained upon nickel surface modification in aqueous solution of rhodium salts, when a spontaneous deposition of rhodium takes place based on the chemical displacement reaction 3Ni + 2Rh3+ = 3Ni2+ + 2Rh. In the case of smooth Ni-poly electrodes, HER activity surpasses the activity of Pt-poly already after 30 s of exchange with Rh. SEM analysis showed that Rh is uniformly distributed, while surface roughness changes within 10%, agreeing with electrochemical measurements. Furthermore, XPS analysis has shown effective incorporation of Rh in the surface, while DFT calculations suggest that hydrogen binding is significantly weakened on the Rh-modified Ni surfaces. Such tuning of the hydrogen binding energy is seen as the main factor governing HER activity improvements. The same galvanic displacement protocols were employed for nickel foam electrodes and electrodeposited Ni on Ti mesh. In both cases, somewhat longer Rh exchange times are needed to obtain superior activities than for the smooth Ni surface, but up to 10 min. HER overpotential corresponding to −10 mA cm−2 for nickel foam and electrodeposited Ni electrodes, after modification with Rh, amounted to only −0.07 and −0.09 V, respectively. Thus, it is suggested that a fast spontaneous displacement of Ni with Rh could effectively boost HER in alkaline media with minor cost penalties compared to energy saving in the electrolysis process.


2020 ◽  
Vol 1 (3) ◽  
pp. 430-440
Author(s):  
Joumada Al Cheikh ◽  
Rosa Zakari ◽  
Amit C. Bhosale ◽  
Angel Villagra ◽  
Nathalie Leclerc ◽  
...  

We report on the synthesis and the electrochemical characterization of two [Mo3S4]4+ nanoclusters, [Mo3S4(acacbut)3]Cl and [Mo3S4–Pd(acacbut)3]Cl.


2021 ◽  
Vol 9 (5) ◽  
pp. 2754-2763
Author(s):  
Kenya Kani ◽  
Hyunsoo Lim ◽  
Andrew E. Whitten ◽  
Kathleen Wood ◽  
Anya J. E. Yago ◽  
...  

The mesoporous RhNi alloy films are synthesized by controlling the concentration of Rh precursor, applied potentials, and pH via the electrochemical co-deposition method with self-assembled polymeric micelles templates for enhancing electrocatalytic properties.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4651
Author(s):  
Yilin Deng ◽  
Wei Lai ◽  
Bin Xu

The energy crisis and environmental pollution have attracted much attention and have promoted researches on clean and sustainable hydrogen energy resources. With the help of highly active and stable transition metal nickel-based catalysts, the production of hydrogen from water electrolysis from electrolyzed water has become an inexpensive and efficient strategy for generating hydrogen energy. In recent years, heteroatom doping has been found to be an effective strategy to improve the electrocatalytic hydrogen evolution reaction (HER) performances of nickel-based catalysts in acidic, neutral, and alkaline media. This review will highlight many recent works of inexpensive and readily available heteroatom-doped nickel-based HER catalysts. The evaluation methods for the performances of HER catalyst will be briefly described, and the role of heteroatom doping and its application in nickel-based catalyst will be summarized. This article will also point out some heteroatom doping strategies, which may provide references and inspire the design of other catalysts with dopants.


2008 ◽  
Vol 44 (12) ◽  
pp. 1350-1358 ◽  
Author(s):  
V. V. Kuznetsov ◽  
A. A. Kalinkina ◽  
T. V. Pshenichkina ◽  
V. V. Balabaev

Author(s):  
Xuejun Zhai ◽  
Qingping Yu ◽  
Guishan Liu ◽  
Junlu Bi ◽  
Yu Zhang ◽  
...  

Hydrogen evolution reaction (HER) based on water electrolysis is promising for renewable hydrogen production. Limited by sluggish anodic oxygen evolution reaction (OER), rational fabrication of efficient catalyst for HER coupled...


2020 ◽  
Author(s):  
Hong Liu ◽  
Jian-Jun Wang ◽  
Li-Wen Jiang ◽  
Yuan Huang ◽  
Bing Bing Chen ◽  
...  

<p>Hydrogen production via alkaline water electrolysis is of significant interest. However, the additional water dissociation step makes the Volmer step a relatively more sluggish kinetics and consequently leads to a slower reaction rate than that in acidic solution. Herein, we demonstrate an effective strategy that Co(OH)<sub>2</sub> can promote the Volmer process by accelerating water dissociation and enhance the electrocatalytic performance of CoP toward alkaline hydrogen evolution reaction. The Co(OH)<sub>2</sub> nanoplates are electrochemically induced in-situ generated to form a nanotree-like structure with porous CoP nanowires, endowing the hybrid electrocatalyst with superior charge transportation, more exposed active sites, and enhanced reaction kinetics. This strategy may be extended to <a></a><a>other phosphides and chalcogenides </a>and provide insight into the design and fabrication of efficient alkaline HER catalysts.</p>


Sign in / Sign up

Export Citation Format

Share Document