NUMERICAL SIMULATIONS OF TURBULENT FLOW THROUGH SCREEN MESH

2008 ◽  
pp. 995-1003 ◽  
Author(s):  
A. Shklyar ◽  
A. Arbel
Author(s):  
Guang Yin ◽  
Bjørnar Nitter ◽  
Muk Chen Ong

Abstract Orifice flow meters are widely used in industries to measure the flow rate in pipelines. The flow rate inside the pipe can be calculated using the relationship between the flow velocity and the pressure drop across the orifice plate. In the present study, numerical simulations have been carried out using three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations combined with the k-ω SST turbulence model to thoroughly investigate the turbulent flow through a circular square-edged orifice with various orifice plate thicknesses and orifice diameters inside a pipe at different Reynolds numbers ranging from 2500 to 40000. The orifice thickness to pipe diameter ratio (t) varies between 0.125 and 2 and the orifice diameter to pipe diameter (ß) varies between 0.25 and 0.75. The resulting centerline profiles of the streamwise velocity and pressure of the present study are compared with the previous published numerical results and experimental data as the validation study. The effects of Reynolds numbers and orifice geometries on the pressure, the flow velocity and vorticity distribution in the orifice are discussed in detail. It is found that for the fixed ß, the discharge coefficient increases with the increasing t and the vortical structure inside the orifice is separated into two regions located at the two edges of the orifice. For the fixed t, the size of the large recirculation motions behind the plate increases and the vorticity around the plate becomes stronger with the decreasing ß.


2020 ◽  
Author(s):  
Guang Yin ◽  
Bjørnar Nitter ◽  
Muk Chen Ong

Abstract Orifice flow meters are widely used in industries to measure the flow rate in pipelines. The flow rate inside the pipe can be calculated using the relationship between the flow velocity and the pressure drop across the orifice plate. In the present study, numerical simulations have been carried out using three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations combined with the k-ω SST turbulence model to thoroughly investigate the turbulent flow through a circular square-edged orifice with various orifice plate thicknesses and orifice diameters inside a pipe at different Reynolds numbers ranging from 2500 to 40000. The orifice thickness to pipe diameter ratio (t) varies between 0.125 and 2 and the orifice diameter to pipe diameter (β) varies between 0.25 and 0.75. The resulting centerline profiles of the streamwise velocity and pressure of the present study are compared with the previous published numerical results and experimental data as the validation study. The effects of Reynolds numbers and orifice geometries on the pressure, the flow velocity and vorticity distribution in the orifice are discussed in detail.


2015 ◽  
Vol 784 ◽  
pp. 681-693 ◽  
Author(s):  
A. Samanta ◽  
R. Vinuesa ◽  
I. Lashgari ◽  
P. Schlatter ◽  
L. Brandt

Direct numerical simulations of the fully developed turbulent flow through a porous square duct are performed to study the effect of the permeable wall on the secondary cross-stream flow. The volume-averaged Navier–Stokes equations are used to describe the flow in the porous phase, a packed bed with porosity ${\it\varepsilon}_{c}=0.95$. The porous square duct is computed at $\mathit{Re}_{b}\simeq 5000$ and compared with the numerical simulations of a turbulent duct with four solid walls. The two boundary layers on the top wall and porous interface merge close to the centre of the duct, as opposed to the channel, because the sidewall boundary layers inhibit the growth of the shear layer over the porous interface. The most relevant feature in the porous duct is the enhanced magnitude of the secondary flow, which exceeds that of a regular duct by a factor of four. This is related to the increased vertical velocity, and the different interaction between the ejections from the sidewalls and the porous medium. We also report a significant decrease in the streamwise turbulence intensity over the porous wall of the duct (which is also observed in a porous channel), and the appearance of short spanwise rollers in the buffer layer, replacing the streaky structures of wall-bounded turbulence. These spanwise rollers most probably result from a Kelvin–Helmholtz type of instability, and their width is limited by the presence of the sidewalls.


2011 ◽  
Vol 18 (6) ◽  
pp. 491-502 ◽  
Author(s):  
Andrew Mintu Sarkar ◽  
M. A. Rashid Sarkar ◽  
Mohammad Abdul Majid

2005 ◽  
Vol 12 (4) ◽  
pp. 385-394 ◽  
Author(s):  
M. A. Rashid Sarkar ◽  
M. Zaidul Islam ◽  
M. A. Islam

Sign in / Sign up

Export Citation Format

Share Document