scholarly journals Efficient Generalized Ratio-Product Type Estimators for Finite Population Mean with Ranked Set Sampling

2016 ◽  
Vol 42 (3) ◽  
pp. 137-148 ◽  
Author(s):  
V.L. Mandowara ◽  
Nitu Mehta

In this paper we suggest two modified estimators of the population mean using the power transformation based on ranked set sampling (RSS). The first order approximation of the bias and of the mean squared error of the proposed estimators are obtained. A generalized version of the suggested estimators by applying the power transformation is also presented. Theoretically, it is shown that these suggested estimators are more efficient than the estimators in simple random sampling (SRS). A numerical illustration is also carried out to demonstrate the merits of the proposed estimators using RSS over the usual estimators in SRS.

2022 ◽  
pp. 62-85
Author(s):  
Carlos N. Bouza-Herrera ◽  
Jose M. Sautto ◽  
Khalid Ul Islam Rather

This chapter introduced basic elements on stratified simple random sampling (SSRS) on ranked set sampling (RSS). The chapter extends Singh et al. results to sampling a stratified population. The mean squared error (MSE) is derived. SRS is used independently for selecting the samples from the strata. The chapter extends Singh et al. results under the RSS design. They are used for developing the estimation in a stratified population. RSS is used for drawing the samples independently from the strata. The bias and mean squared error (MSE) of the developed estimators are derived. A comparison between the biases and MSEs obtained for the sampling designs SRS and RSS is made. Under mild conditions the comparisons sustained that each RSS model is better than its SRS alternative.


Author(s):  
A. Y. Erinola ◽  
R. V. K. Singh ◽  
A. Audu ◽  
T. James

This study proposed modified a class of estimator in simple random sampling for the estimation of population mean of the study variable using as axillary information. The biases and MSE of suggested estimators were derived up to the first order approximation using Taylor’s series expansion approach. Theoretically, the suggested estimators were compared with the existing estimators in the literature. The mean square errors (MSE) and percentage relative efficiency (PRE) of proposed estimators and that of some existing estimators were computed numerically and the results revealed that the members of the proposed class of estimator were more efficient compared to their counterparts and can produce better estimates than other estimators considered in the study.


Author(s):  
Hani M. Samawi ◽  
Eman M. Tawalbeh

The performance of a regression estimator based on the double ranked set sample (DRSS) scheme, introduced by Al-Saleh and Al-Kadiri (2000), is investigated when the mean of the auxiliary variable X is unknown. Our primary analysis and simulation indicates that using the DRSS regression estimator for estimating the population mean substantially increases relative efficiency compared to using regression estimator based on simple random sampling (SRS) or ranked set sampling (RSS) (Yu and Lam, 1997) regression estimator.  Moreover, the regression estimator using DRSS is also more efficient than the naïve estimators of the population mean using SRS, RSS (when the correlation coefficient is at least 0.4) and DRSS for high correlation coefficient (at least 0.91.) The theory is illustrated using a real data set of trees.  


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0246947
Author(s):  
Sohail Ahmad ◽  
Muhammad Arslan ◽  
Aamna Khan ◽  
Javid Shabbir

In this paper, we propose a generalized class of exponential type estimators for estimating the finite population mean using two auxiliary attributes under simple random sampling and stratified random sampling. The bias and mean squared error (MSE) of the proposed class of estimators are derived up to first order of approximation. Both empirical study and theoretical comparisons are discussed. Four populations are used to support the theoretical findings. It is observed that the proposed class of estimators perform better as compared to all other considered estimator in simple and stratified random sampling.


2016 ◽  
Vol 8 (3) ◽  
pp. 321-339
Author(s):  
R. Pandey ◽  
K. Yadav ◽  
N. S. Thakur

The present paper provides alternative improved Factor-Type (F-T) estimators of population mean in presence of item non-response for the practitioners. The proposed estimators have been shown to be more efficient than the four existing estimators which are more efficient than the usual ratio and the mean estimators. Optimum conditions for minimum mean squared error are obtained for the new estimators. Empirical comparisons based on three different data sets establish that the proposed estimators record least mean squared error and hence a substantial gain in Percentage Relative Efficiency (P.R.E.), over these five contemporary estimators.


2017 ◽  
Vol 1 ◽  
pp. 1-14
Author(s):  
Subramani Jambulingam ◽  
Ajith S. Master

Introduction: In sampling theory, different procedures are used to obtain the efficient estimator of the population mean. The commonly used method is to obtain the estimator of the population mean is simple random sampling without replacement when there is no auxiliary variable is available. There are methods that use auxiliary information of the study characteristics. If the auxiliary variable is correlated with study variable, number of estimators are widely available in the literature.Objective: This study deals with a new ratio cum product estimator is developed for the estimation of population mean of the study variable with the known median of the auxiliary variable in simple random sampling.Materials and Methods: The bias and mean squared error of proposed estimator are derived and compared with that of the existing estimators by analytically and numerically.Results: The proposed estimator is less biased and mean squared error is less than that of the existing estimators and from the numerical study, under some known natural populations, the bias of proposed estimator is approximately zero and the mean squared error ranged from 6.83 to 66429.21 and percentage relative efficiencies ranged from 103.65 to 2858.75.Conclusion: The proposed estimator under optimum conditions is almost unbiased and performs better than all other existing estimators.Nepalese Journal of Statistics, 2017, Vol. 1, 1-14


2021 ◽  
Vol 48 (2) ◽  
Author(s):  
Sana Amjad ◽  
◽  
Muhammad Ismail ◽  

This paper provides an efficient transformed ratio-type estimator to estimate the study variable's population variance by utilizing information of a single auxiliary variable under simple random sampling without replacement. The bias and mean squared error of the proposed estimator are derived up-to 1st order approximation. In addition to this, the efficiency comparison of the proposed estimator has been done with traditional ratio-type variance estimator and some other widely used modified ratio-type variance estimators by taking real-life data. A simulation study has also been carried out to see the performance of the proposed estimator. It is worth noticing that our proposed estimator performs better than the competing estimators in real-life data applications as the mean squared error and root mean squared error of our proposed estimator are smaller than the competing estimators. Hence, our proposed estimator is better than existing variance estimators.


Author(s):  
Housila P. Singh ◽  
Pragati Nigam

This article addresses the problem of estimating the population mean using information on two auxiliary variables in presence of non-response on study variable only under stratified random sampling. A class of estimators has been defined. We have derived the bias and mean squared error up to first order of approximation. Optimum conditions are obtained in which the suggested class of estimators has minimum mean squared error. In addition to Chaudhury et al. (2009) estimator, many estimators can be identified as a member of the suggested class of estimators. It has been shown that the suggested class of estimators is better than the Chaudhury et al. (2009) estimator and other estimators. Results of the present study are supported through numerical illustration.


Author(s):  
M. A. Yunusa ◽  
A. Audu ◽  
N. Musa ◽  
D. O. Beki ◽  
A. Rashida ◽  
...  

The estimation of population coefficient of variation is one of the challenging aspects in sampling survey techniques for the past decades and much effort has been employed to develop estimators to produce its efficient estimate. In this paper, we proposed logarithmic ratio type estimator for the estimating population coefficient of variation using logarithm transformation on the both population and sample variances of the auxiliary character. The expression for the mean squared error (MSE) of the proposed estimator has been derived using Taylor series first order approximation approach. Efficiency conditions of the proposed estimator over other estimators in the study has also been derived. The empirical study was conducted using two-sets of populations and the results showed that the proposed estimator is more efficient. This result implies that, the estimate of proposed estimator will be closer to the true parameter than the estimates of other estimators in the study.


2006 ◽  
Vol 25 (1) ◽  
pp. 117-138 ◽  
Author(s):  
Fernanda P. M. Peixe ◽  
Alastair R. Hall ◽  
Kostas Kyriakoulis

Sign in / Sign up

Export Citation Format

Share Document