scholarly journals Efficient Method of Estimating the Finite Population Mean Based on Two Auxiliary Variables in the Presence of Non-Response Under Stratified Sampling

Author(s):  
Housila P. Singh ◽  
Pragati Nigam

This article addresses the problem of estimating the population mean using information on two auxiliary variables in presence of non-response on study variable only under stratified random sampling. A class of estimators has been defined. We have derived the bias and mean squared error up to first order of approximation. Optimum conditions are obtained in which the suggested class of estimators has minimum mean squared error. In addition to Chaudhury et al. (2009) estimator, many estimators can be identified as a member of the suggested class of estimators. It has been shown that the suggested class of estimators is better than the Chaudhury et al. (2009) estimator and other estimators. Results of the present study are supported through numerical illustration.

Author(s):  
Housila P. Singh ◽  
Anita Yadav

This paper addresses the problem of estimating the population mean  of the study variable using information on transformed auxiliary variables. In addition to many, Yasmeen et al (2015) estimator shown to the members of the suggested classes of estimators. We have derived the bias and mean squared error (MSE) of the suggested classes of estimators to the first degree of approximation. We have obtained the optimum conditions for which the suggested classes of estimators have minimum mean squared errors. It has been shown that the proposed classes of estimators are more efficient than the estimators recently envisaged by Yasmeen et al (2015) and other existing estimators.


2016 ◽  
Vol 8 (3) ◽  
pp. 321-339
Author(s):  
R. Pandey ◽  
K. Yadav ◽  
N. S. Thakur

The present paper provides alternative improved Factor-Type (F-T) estimators of population mean in presence of item non-response for the practitioners. The proposed estimators have been shown to be more efficient than the four existing estimators which are more efficient than the usual ratio and the mean estimators. Optimum conditions for minimum mean squared error are obtained for the new estimators. Empirical comparisons based on three different data sets establish that the proposed estimators record least mean squared error and hence a substantial gain in Percentage Relative Efficiency (P.R.E.), over these five contemporary estimators.


Author(s):  
Mohammad S. Ahmed

Dash and Mishra [1] suggested an improved class of estimators without defining the optimum estimator. However, they gave the wrong Taylor’s series expression of their class of estimator and their minimum mean squared error expressions are also incorrect. Here we show that Ahmed et al.’s [2] class of chain estimators is more efficient than Dash and Mishra’s [1], with minimum mean squared error.  


Author(s):  
Santi Koonkarnkhai ◽  
Phongsak Keeratiwintakorn ◽  
Piya Kovintavewat

In bit-patterned media recording (BPMR) channels, the inter-track interference (ITI) is extremely severe at ultra high areal densities, which significantly degrades the system performance. The partial-response maximum-likelihood (PRML) technique that uses an one-dimensional (1D) partial response target might not be able to cope with this severe ITI, especially in the presence of media noise and track mis-registration (TMR). This paper describes the target and equalizer design for highdensity BPMR channels. Specifically, we proposes a two-dimensional (2D) cross-track asymmetric target, based on a minimum mean-squared error (MMSE) approach, to combat media noise and TMR. Results indicate that the proposed 2D target performs better than the previously proposed 2D targets, especially when media noise and TMR is severe.


2022 ◽  
pp. 62-85
Author(s):  
Carlos N. Bouza-Herrera ◽  
Jose M. Sautto ◽  
Khalid Ul Islam Rather

This chapter introduced basic elements on stratified simple random sampling (SSRS) on ranked set sampling (RSS). The chapter extends Singh et al. results to sampling a stratified population. The mean squared error (MSE) is derived. SRS is used independently for selecting the samples from the strata. The chapter extends Singh et al. results under the RSS design. They are used for developing the estimation in a stratified population. RSS is used for drawing the samples independently from the strata. The bias and mean squared error (MSE) of the developed estimators are derived. A comparison between the biases and MSEs obtained for the sampling designs SRS and RSS is made. Under mild conditions the comparisons sustained that each RSS model is better than its SRS alternative.


1983 ◽  
Vol 32 (1-2) ◽  
pp. 47-56 ◽  
Author(s):  
S. K. Srivastava ◽  
H. S. Jhajj

For estimating the mean of a finite population, Srivastava and Jhajj (1981) defined a broad class of estimators which we information of the sample mean as well as the sample variance of an auxiliary variable. In this paper we extend this class of estimators to the case when such information on p(> 1) auxiliary variables is available. The estimators of the class involve unknown constants whose optimum values depend on unknown population parameters. When these population parameters are replaced by their consistent estimates, the resulting estimators are shown to have the same asymptotic mean squared error. An expression by which the mean squared error of such estimators is smaller than those which use only the population means of the auxiliary variables, is obtained.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0246947
Author(s):  
Sohail Ahmad ◽  
Muhammad Arslan ◽  
Aamna Khan ◽  
Javid Shabbir

In this paper, we propose a generalized class of exponential type estimators for estimating the finite population mean using two auxiliary attributes under simple random sampling and stratified random sampling. The bias and mean squared error (MSE) of the proposed class of estimators are derived up to first order of approximation. Both empirical study and theoretical comparisons are discussed. Four populations are used to support the theoretical findings. It is observed that the proposed class of estimators perform better as compared to all other considered estimator in simple and stratified random sampling.


2015 ◽  
Vol 11 (1) ◽  
pp. 91-114 ◽  
Author(s):  
J. Subramani ◽  
G. Kumarapandiyan

Abstract In this paper we have proposed a class of modified ratio type variance estimators for estimation of population variance of the study variable using the known parameters of the auxiliary variable. The bias and mean squared error of the proposed estimators are obtained and also derived the conditions for which the proposed estimators perform better than the traditional ratio type variance estimator and existing modified ratio type variance estimators. Further we have compared the proposed estimators with that of the traditional ratio type variance estimator and existing modified ratio type variance estimators for certain natural populations.


2016 ◽  
Vol 42 (3) ◽  
pp. 137-148 ◽  
Author(s):  
V.L. Mandowara ◽  
Nitu Mehta

In this paper we suggest two modified estimators of the population mean using the power transformation based on ranked set sampling (RSS). The first order approximation of the bias and of the mean squared error of the proposed estimators are obtained. A generalized version of the suggested estimators by applying the power transformation is also presented. Theoretically, it is shown that these suggested estimators are more efficient than the estimators in simple random sampling (SRS). A numerical illustration is also carried out to demonstrate the merits of the proposed estimators using RSS over the usual estimators in SRS.


2017 ◽  
Vol 1 ◽  
pp. 1-14
Author(s):  
Subramani Jambulingam ◽  
Ajith S. Master

Introduction: In sampling theory, different procedures are used to obtain the efficient estimator of the population mean. The commonly used method is to obtain the estimator of the population mean is simple random sampling without replacement when there is no auxiliary variable is available. There are methods that use auxiliary information of the study characteristics. If the auxiliary variable is correlated with study variable, number of estimators are widely available in the literature.Objective: This study deals with a new ratio cum product estimator is developed for the estimation of population mean of the study variable with the known median of the auxiliary variable in simple random sampling.Materials and Methods: The bias and mean squared error of proposed estimator are derived and compared with that of the existing estimators by analytically and numerically.Results: The proposed estimator is less biased and mean squared error is less than that of the existing estimators and from the numerical study, under some known natural populations, the bias of proposed estimator is approximately zero and the mean squared error ranged from 6.83 to 66429.21 and percentage relative efficiencies ranged from 103.65 to 2858.75.Conclusion: The proposed estimator under optimum conditions is almost unbiased and performs better than all other existing estimators.Nepalese Journal of Statistics, 2017, Vol. 1, 1-14


Sign in / Sign up

Export Citation Format

Share Document