scholarly journals Power Systems Stability through Piecewise Monotonic Data Approximations – Part 2: Adaptive Number of Monotonic Sections and Performance of L1PMA, L2WPMA, and L2CXCV in Overhead Medium-Voltage Broadband over Power Lines Networks

2017 ◽  
Vol 3 (1) ◽  
pp. 33-60
Author(s):  
Athanasios Lazaropoulos
2016 ◽  
Vol 2016 ◽  
pp. 1-24 ◽  
Author(s):  
Athanasios G. Lazaropoulos

This paper investigates the efficiency and accuracy of the best L1 piecewise monotonic data approximation (best L1PMA) in order either to approximate the transfer functions of distribution BPL networks or to reveal the aforementioned transfer functions when various faults occur during their determination. The contribution of this paper is quadruple. First, based on the inherent piecewise monotonicity of distribution BPL transfer functions, a piecewise monotonic data approximation is first applied in BPL networks; best L1PMA is outlined and applied during the determination of distribution BPL transfer functions. Second, suitable performance metrics such as the percent error sum (PES) and fault PES are reported and applied so as to assess the efficiency and accuracy of the best L1PMA during the determination of distribution BPL transfer functions. Third, the factors of distribution BPL networks that influence the performance of best L1PMA are identified. Fourth, the accuracy of the best L1PMA is assessed with respect to its inherent properties, namely, the assumed number of monotonic sections and the nature of faults, that is, faults that follow either continuous uniform distribution (CUD) or normal distribution (ND), during the determination of distribution BPL transfer functions. Finally, best L1PMA may operate as the necessary intermediate antifault method for the theoretical and practical transfer function determination of distribution BPL networks.


2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
R. K. Dhatrak ◽  
R. K. Nema ◽  
D. M. Deshpande

In today’s industrial world multilevel inverter (MLI) got a significant importance in medium voltage application and also a very potential topic for researchers. It is experienced that studying and comparing results of multilevel inverter (MLI) at distinct levels are a costlier and time consuming issue for any researcher if he fabricate different inverters for each level, as designing power modules simultaneously for different level is a cumbersome task. In this paper a flexible quotient has been proposed to recognize possible conversion of available MLI to few lower level inverters by appropriately changing microcontroller programming. This is an attempt to obtain such change in levels through simulation using MATLAB Simulink on inductive load which may also be applied to induction motor. Experimental results of pulse generation using dsPIC33EP256MC202 demonstrate the feasibility of proposed scheme. Proposed flexible quotient successfully demonstrates that a five-level inverter may be operated as three and two levels also. The paper focuses on odd levels only as common mode voltage (CMV) can be reduced to zero and performance of drives is better than even level. Simulated and experimental results are given in paper.


Sign in / Sign up

Export Citation Format

Share Document