scholarly journals A current-limiting and energy-transferring DC circuit breaker topology for DC distribution network

2014 ◽  
Vol 556-562 ◽  
pp. 1959-1963
Author(s):  
Si Ming Wei ◽  
Yi Gong Zhang ◽  
Huan Liu ◽  
Zhi Qiang Dai ◽  
Xiao Du

It is great significance for development of MTDC (Multi-terminal HVDC) to build DC transmission and distribution grids. However, the relatively low impedance in DC grids makes the fault penetration much faster and deeper .Consequently, fast and reliable DC circuit breaker is needed to isolate faults. Breaking time and other parameters are important for a breaker to achieve its goals. This paper presents a DC circuit breaker with a current-limiting inductance and gets the rising and falling characteristics of fault current. Based on the characteristics, a design method of breaking time sequence will be given, as well as the calculation of current-limiting inductance and the selection principles of arresters. A 10kV DC distribution grid is modeled and simulated by PSCAD/EMTDC to verify that the method can meet the requirements of breaking fault current quickly and reliably.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2469
Author(s):  
Sang-Jae Choi ◽  
Sung-Hun Lim

DC faults cause severe disruption in not only the DC system but also the AC system because the fault current is very large and rapidly increases. The DC circuit breaker used to separate the DC faults from the power system is still being researched, but it is very expensive due to the use of multiple power semiconductors to interrupt a large fault current in a short time. However, if the quench characteristic of a superconductor is used, the amplitude of fault current can be reduced. Therefore, it is possible to effectively interrupt a large fault current even if a relatively cheap mechanically passive DC circuit breaker is used. In the current study, a superconducting hybrid DC circuit breaker is proposed, and the limiting characteristics of each element are analyzed. By using two superconducting elements, the quench occurs sequentially twice according to the magnitude of the fault current, and the current-limiting reactor and resistance are used. If a current-limiting reactor is used in the DC system, the fault current rises slowly at the beginning of the fault, and the use of resistance can reduce the magnitude of the fault current. The inductance of the current-limiting reactor and resistance parameter settings of the hybrid DC circuit breaker was analyzed by the step-changing case method, and the interrupting characteristic of the DC circuit breaker was improved.


2016 ◽  
Vol 26 (7) ◽  
pp. 1-5 ◽  
Author(s):  
Bin Xiang ◽  
Licai Zhang ◽  
Kun Yang ◽  
Yaxiong Tan ◽  
Zhiyuan Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document