scholarly journals The strategy of sequential surface machining of the free form surface with the use the ball-end mill and elastic abrasive discs

Mechanik ◽  
2016 ◽  
pp. 1082-1083
Author(s):  
Jarosław Plichta ◽  
Jan Baran
Author(s):  
Tomonobu Suzuki ◽  
Koichi Morishige

Abstract This study aimed to improve the efficiency of free-form surface machining by using a five-axis controlled machine tool and a barrel tool. The barrel tool has cutting edges, with curvature smaller than the radius, increasing the pick feed width compared with a conventional ball end mill of the same tool radius. As a result, the machining efficiency can be improved; however, the cost of the barrel tool is high and difficult to reground. In this study, a method to obtain the cutting points that make the cusp height below the target value is proposed. Moreover, a method to improve the tool life by continuously and uniformly changing the contact point on the cutting edge is proposed. The usefulness of the developed method is confirmed through machining simulations.


2011 ◽  
Vol 215 ◽  
pp. 176-181
Author(s):  
Li Min ◽  
Ke Hua Zhang

A new tool path generation method based on cutter shaft tilt method was proposed for free-form surface machining by using Ball-end Cutter. Firstly, it introduces the processing quality problems caused by traditional ball-end mill processing. Then cutter shaft tilt was proposed to avoid the above questions. Analyzing the different machining efficiency at the different angle, and then cutter shaft tilt compensation method which based on above method could avoid that problem was proposed. After the paths calculation to a real surface and simulation, the result shows that, comparing to traditional machining method, the new method reduced efficiently phenomenon of extruding and scratching surface. It meets five-axis processing accuracy requirements.


2011 ◽  
Vol 697-698 ◽  
pp. 244-248
Author(s):  
Ke Hua Zhang ◽  
Li Min ◽  
Dong Hui Wen

A new tool path generation method based on Z-buffer method is proposed for free-form surface machining by using ball-end cutters. Firstly, to avoid ball-end mill cutting the workpiece, we make the cutter shaft which is perpendicular to machining surface tilt angle θ, then determine the examining area and then judge there is or not a interference occurring between ball-end mill and examining area, if there is, then make a adjustment for cutter shaft. The discretized points within the examining area are efficiently read in and stored directly by the computer hardware; no extra searching and iterative methods are needed. Simulation results show that, comparing with the traditional algorithm, the tool-position calculation time is shorter, and the phenomenon of workpiece squeezed and scratched is less in this algorithm. It meets the basic needs of five axis machining accuracy. Finally we make a practical machining experiment for cutter location generated.


Author(s):  
Jean-Max Redonnet ◽  
Alejandro Gamboa Vázquez ◽  
Alberto Traslosheros Michel ◽  
Stéphane Segonds

Machining by parallel planes is a widely used strategy for end-milling of free-form surfaces on 3-axis numerically controlled machines. In industry, this type of machining is generally performed with a hemispherical tool. However, numerous studies have shown the benefits of torus-end mills over ball-end or flat-end mills. More than anything, the machining direction has much influence on productivity while using a torus-end mill. In this context, the choice of the machining direction is of paramount importance when using a torus-end mill in the machining of free-form surfaces. This paper presents an optimization of part machining direction allowing the machining time to be minimized while respecting the maximum imposed scallop height. This optimization methodology is then applied to an industrial part and measurements are performed on this part. The study highlights the interest of optimizing the machining direction and the benefits that can be drawn with respect to machining using a non-optimized direction.


2021 ◽  
Vol 15 (1) ◽  
pp. 7837-7845
Author(s):  
H. Hendriko ◽  
G. Kiswanto ◽  
A. Akhyan ◽  
J. Y. Zaira ◽  
I. Idris ◽  
...  

This paper presents a simple analytical approach to define cut geometry of multi-pass rough milling during a free-form surface milling. The shape of in-process workpiece surface was identified using the coordinate of corner points that are found in every step of stair-surface. In every instantaneous tool location, the workpiece sections that have possibility intersecting with the cutting edge were identified based on the coordinate of cutter location point. The algorithm was developed for machining using indexable flat end-mill by considering the effect of helix angle to the cut geometry. The proposed method was successfully used to determine the length of cut and generate the shape of cuts. The implementation test also demonstrated that helix angle tends to produce larger cut.The validation of the accuracy was carried out by comparing the length of cut measured using CAD software with those generated by the proposed approach. The results showed that the differences were very small or less than 0.4%. Therefore, it can be taken into conclusion that the method was accurate. The comparison test on computational time was conducted. ABS took only 1.63 second for calculating cut geometry during one tool pass, while Z-mapping method spent 23.21 second. This result proved that ABS is computationally more efficient.


2008 ◽  
Vol 59 ◽  
pp. 51-54 ◽  
Author(s):  
Dirk Biermann ◽  
T. Jansen ◽  
M. Feldhoff

A growing demand for fibre-reinforced ceramics necessitates effective ways for machining these materials. In this paper, different tool concepts are presented for an efficient machining of carbon fibre-reinforced silicon carbide. Drill hole machining, slot machining and first investigations of free-form surface machining are presented.


Author(s):  
Feiyan Han ◽  
Juan Wei ◽  
Bin Feng ◽  
Wu Zhang

The manufacturing technology of an integral impeller is an important indicator for measuring the manufacturing capability of a country. Its manufacturing process involves complex free-form surface machining, a time consuming and error-prone process, and the tool path planning is considered as a critical issue of free-form surface machining but still lacks a systematic solution. In this paper, aiming at the tool path planning of the impeller channel, a quasi-triangular tool path planning method based on parametric domain template trajectory mapping is proposed. The main idea is to map the template trajectory to physical domain by using the mapping model of parametric domain to the physical domain to obtain the actual machining path. Firstly, the trajectory mapping model of parametric domain to physical domain is established using the morphing technique, and the template trajectory mapping method in the parametric domain is given. Secondly, the clean-up boundary of the impeller channel is determined in the parametric domain, and the quasi-triangular template trajectory of the impeller channel is defined. Finally, taking a certain type of impeller as an example, the quasi-triangular tool path of the impeller channel is calculated, and the tool path calculation time of this method is compared with that of the traditional isometric offset method. The result shows that the computational efficiency is improved by 45% with this method, which provides a new method for the rapid acquisition of NC machining tool path for impeller channels. In addition, the simulation and actual machining are carried out, the results show that the shape of actual cutting traces on the surface of the impeller channel is quasi-triangular, showing that this method is effective and feasible.


Sign in / Sign up

Export Citation Format

Share Document