hole machining
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 34)

H-INDEX

15
(FIVE YEARS 1)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 96
Author(s):  
Hai-Ping Tsui ◽  
Shih-Yu Hsu

Fe-based metallic glass possesses high hardness and brittleness. It is a hard-to-cut metal material and difficult to machine by conventional methods. Although electrical discharge machining (EDM) has advantages in machining hard-to-cut metal materials, recast layer, pores, and micro cracks will form on the machined surface after machining. The study used a helical tool for the micro electrical discharge drilling (µ-EDD) process on Fe-based metallic glass. The influence of processing parameters, including the pulse on time, gap voltage, duty factor, and spindle rotational speed on the micro hole machining quality characteristics was investigated. The helical tool with SiC electrophoretic deposited (EPD) film was used to polish the inner surface of the electrical discharged micro hole. The findings show that the best micro hole accuracy, tool wear length, and inner surface were obtained at the spindle rotation speed of 1150 rpm, pulse on time of 5 μs, gap voltage of 30 V, and duty factor of 40%. The inner surface roughness can be reduced to 0.018 µm by using EPD tool. The inner surface was polished up to form a mirror surface.


2021 ◽  
pp. 79-84
Author(s):  

The wear of the transverse edge of the drill, the features of the drill web and the calculation determination of the temperature fields in the zone of its operation are investigated. Dependences are obtained for determining the total contact temperatures on the front and rear surfaces of the half-web. The results were used to create CAD for blade hole machining modes with application to the processing of heat-resistant materials of gas turbine engines. Keywords: hole, blade processing, drilling, transverse edge, temperature fields. [email protected]


2021 ◽  
Vol 73 (6) ◽  
pp. 993-999
Author(s):  
Daguo Yu ◽  
Ming Zhao

Purpose This study and its centering device with Archimedes spirals designed on hydrodynamic lubrication aims to reduce the deviation of deep holes because the drill tube is long and easy to deviate in deep hole machining. Design/methodology/approach The centering device with Archimedes spirals was designed and fixed between the drilling tool and the drill tube. The wall of the deep hole and the novel centering device formed three wedge-shaped oil films. When the workpiece rotated relative to the centering device, pressure was generated in the oil films; therefore, three oil films supported drilling system as oil films support rotating journal in the full-film hydrodynamic bearing. Findings When the Boring and Trepanning Association (BTA) drilling system was equipped with the centering device, the cutting oil flowed smoothly and carried all the iron chips; the motors run normally; no additional vibration or sound was detected during processing; the surface of the centering device was smooth; and the deviation of the drilled deep hole decreased with a high probability. Originality/value To the best of the authors’ knowledge, no one has designed and made the centering device with Archimedes spirals to reduce the deviation of deep holes in deep hole machining. Three oil films formed by the centering device with Archimedes spirals support drilling system and prevent it from deviating, which has never appeared before and is creative.


Author(s):  
Xuda Qin ◽  
Xingfeng Cao ◽  
Hao Li ◽  
Meng Zhou ◽  
Ende Ge ◽  
...  

Due to good aerodynamic performance and reliability, countersunk bolt joint is one of the most commonly used connection methods for carbon fiber reinforced polymer (CFRP) components in the aircraft. However, the countersunk hole machining process is inevitably accompanied by geometric errors, which will directly affect the mechanical properties of the joint structure. This paper presents a numerical and experimental investigation on the effect of countersunk hole geometry errors on the fatigue performance of CFRP bolted joints. FE model of CFRP countersunk bolted joints with designed geometry errors are established, and the rationality of the FE analysis was verified by fatigue life and failure forms. The CFRP bolted structure failure mechanism under fatigue load and influence of hole-making geometry error (including countersunk fillets radius, countersunk depth, and countersunk angle) on the fatigue life are investigated. Based on the relationship between fatigue life and the geometry error, the corresponding tolerances for CFRP bolt joint countersunk hole are determined as well. The research results can provide a reference for establishing reasonable geometric accuracy requirements for CFRP joint hole machining.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3834
Author(s):  
Wanqin Zhao ◽  
Xuesong Mei

Trepanning pattern is an important factor in laser hole machining, affecting both the hole quality and process efficiency. The influence of laser trepanning patterns on the hole ablating using nanosecond pulse laser in Al2O3 ceramics substrate was studied. Two laser trepanning patterns were evaluated, filled spiral trepanning and multiple rings trepanning, with the optimized laser machining parameters. In conjunction with the studies, the hole saturated taper and the saturated processing time were taken as the primary criteria for evaluation of the hole quality and the machining efficiency, respectively. Finally, the trepanning patterns were optimized aiming for the high hole quality; the process was based on the saturated hole tapers. The hole high qualities and machining efficiencies were obtained based on the saturated processing time, which was proven to have a great significance when using the nanosecond pulse laser to machine Al2O3 ceramics substrate.


Sign in / Sign up

Export Citation Format

Share Document