Statistics of Ground Motions in a Foam Rubber Model of a Strike‐Slip Fault

2015 ◽  
Vol 105 (3) ◽  
pp. 1456-1467
Author(s):  
Kevin M. McBean ◽  
John G. Anderson ◽  
James N. Brune ◽  
Rasool Anooshehpoor
2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Bu Seog Ju ◽  
WooYoung Jung ◽  
Myung-Hyun Noh

A lifeline system, serving as an energy-supply system, is an essential component of urban infrastructure. In a hospital, for example, the piping system supplies elements essential for hospital operations, such as water and fire-suppression foam. Such nonstructural components, especially piping systems and their subcomponents, must remain operational and functional during earthquake-induced fires. But the behavior of piping systems as subjected to seismic ground motions is very complex, owing particularly to the nonlinearity affected by the existence of many connections such as T-joints and elbows. The present study carried out a probabilistic risk assessment on a hospital fire-protection piping system’s acceleration-sensitive 2-inch T-joint sprinkler components under seismic ground motions. Specifically, the system’s seismic capacity, using an experimental-test-based nonlinear finite element (FE) model, was evaluated for the probability of failure under different earthquake-fault mechanisms including normal fault, reverse fault, strike-slip fault, and near-source ground motions. It was observed that the probabilistic failure of the T-joint of the fire-protection piping system varied significantly according to the fault mechanisms. The normal-fault mechanism led to a higher probability of system failure at locations 1 and 2. The strike-slip fault mechanism, contrastingly, affected the lowest fragility of the piping system at a higher PGA.


1983 ◽  
Vol 73 (1) ◽  
pp. 45-57 ◽  
Author(s):  
John G. Anderson ◽  
J. Enrique Luco

abstract The near-field motion on the surface of a uniform half-space for oblique-slip and dip-slip faults has been studied by the use of a dislocation model. The fault is modeled by an infinitely long buried dislocation of finite width; rupture propagates horizontally along the fault and past the observation points with a constant rupture velocity lower than the Rayleigh wave velocity. In addition to those parameters which control peak amplitudes near a vertical, strike-slip fault (depth of the top of the fault, horizontal rupture velocity), the dip of the fault plays an important role. The slip direction and the angle between the rupture front and the down-dip direction of the fault also become increasingly important in determining amplitudes of peak ground motions as the dip of the fault decreases from vertical to shallow angles. In some regions near a thrust fault, peak amplitudes are significantly greater than the largest values near a vertical, strike-slip fault.


Sign in / Sign up

Export Citation Format

Share Document