Beyond Backslip: Improvement of Earthquake Simulators from New Hybrid Loading Conditions

2019 ◽  
Vol 109 (6) ◽  
pp. 2159-2167 ◽  
Author(s):  
Bruce E. Shaw

Abstract A standard approach to loading earthquake simulators involving complex fault system geometries is the backslip method, by which fault‐slip rates are specified and stressing rates giving the specified slip rates are calculated and imposed on the system. This often results in singularities in stressing rate at fault boundaries, and unrealistic hypocenters of events associated with these singularities. We present a new generalized hybrid loading method that combines the ability to drive faults at desired slip rates while loading with more regularized stressing rates, allowing faults to slip in a more natural way. The resulting behavior shows improvement in the depth dependence of seismicity, the distribution of sizes of events, and the depth dependence of slip. We discuss as well the physical implications of the new type of loading.

2020 ◽  
Author(s):  
Li Yin

<p>In southeastern Tibetan Plateau, the Xianshuihe-Xiaojiang fault system (XXFS) and its neighboring fault systems collectively accommodates the material extrusion of the Tibetan Plateau. However we do not mechanically understand how these faults interact with each other and how the fault interaction impacts strain partitioning, fault slip rates, and seismicity in this region. We develop and use a three-dimensional viscoelastoplastic finite element model to simulate regional deformation, fault slip rates, and fault interaction in the fault system of southeastern Tibetan Plateau. We investigate the effects of inception and activity of faults, fault strength, lithospheric rheology, and topography on partitioning of strain and fault slip rates. Model results show that fault strength, lithospheric rheology, and topography all significantly influence the strain partitioning and slip rates on faults. The initiation of the Daliangshan fault results mainly from the non-smooth fault geometry of the main trace of the XXFS. Our model results support the hypothesis of codependent slip rate between fault systems. For the present fault configuration, our model predicts localized strain in the Daliangshan faults, Yingjing-Mabian faults, and Lianfeng-Zhaotong faults, where numerous earthquakes occurred in recent years.</p>


Author(s):  
Jingqiu Huang ◽  
◽  
Shuhab Khan ◽  
Abdul Salam Khan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document