The Search of Diffusive Properties in Ambient Seismic Noise

Author(s):  
José Piña-Flores ◽  
Martín Cárdenas-Soto ◽  
Antonio García-Jerez ◽  
Michel Campillo ◽  
Francisco J. Sánchez-Sesma

ABSTRACT Ambient seismic noise (ASN) is becoming of interest for geophysical exploration and engineering seismology, because it is possible to exploit its potential for imaging. Theory asserts that the Green’s function can be retrieved from correlations within a diffuse field. Surface waves are the most conspicuous part of Green’s function in layered media. Thus, the velocities of surface waves can be obtained from ASN if the wavefield is diffuse. There is widespread interest in the conditions of emergence and properties of diffuse fields. In the applications, useful approximations of the Green’s function can be obtained from cross correlations of recorded motions of ASN. An elastic field is diffuse if the background illumination is azimuthally uniform and equipartitioned. It happens with the coda waves in earthquakes and has been verified in carefully planned experiments. For one of these data sets, the 1999 Chilpancingo (Mexico) experiment, there are some records of earthquake pre-events that undoubtedly are composed of ASN, so that the processing for coda can be tested on them. We decompose the ASN energies and study their equilibration. The scheme is inspired by the original experiment and uses the ASN recorded in an L-shaped array that allows the computation of spatial derivatives. It requires care in establishing the appropriate ranges for measuring parameters. In this search for robust indicators of diffusivity, we are led to establish that under certain circumstances, the S and P energy equilibration is a process that anticipates the diffusion regime (not necessarily isotropy), which justifies the use of horizontal-to-vertical spectral ratio in the context of diffuse-field theory.

Geophysics ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. A63-A67 ◽  
Author(s):  
Deyan Draganov ◽  
Xander Campman ◽  
Jan Thorbecke ◽  
Arie Verdel ◽  
Kees Wapenaar

One application of seismic interferometry is to retrieve the impulse response (Green’s function) from crosscorrelation of ambient seismic noise. Various researchers show results for retrieving the surface-wave part of the Green’s function. However, reflection retrieval has proven more challenging. We crosscorrelate ambient seismic noise, recorded along eight parallel lines in the Sirte basin east of Ajdabeya, Libya, to obtain shot gathers that contain reflections. We take advantage of geophone groups to suppress part of the undesired surface-wave noise and apply frequency-wavenumber filtering before crosscorrelation to suppress surface waves further. After comparing the retrieved results with data from an active seismic exploration survey along the same lines, we use the retrieved reflection data to obtain a migrated reflection image of the subsurface.


First Break ◽  
2019 ◽  
Vol 37 (4) ◽  
pp. 83-90
Author(s):  
Soumen Koley ◽  
Henk Jan Bulten ◽  
Jo van den Brand ◽  
Maria Bader ◽  
Frank Linde ◽  
...  

2017 ◽  
Vol 120 (3) ◽  
pp. 341-350 ◽  
Author(s):  
L.J. Bezuidenhout ◽  
M. Doucouré ◽  
V. Wagener ◽  
M. de Wit ◽  
A. Mordret ◽  
...  

Abstract The Karoo region of South Africa is an ideal laboratory to use ambient seismic signals to map the shallow subsurface, as it is a quiet and pristine environment with a geology that is relatively well known. Ambient seismic signals were continuously recorded for a ten week period between August and October 2015. The ambient seismic noise network consisted of two groups of 17 temporary, stand-alone seismic stations each. These were installed in the southeastern Cape Karoo region, near the town of Jansenville. Here we present data on the retrieval and coherency of Rayleigh surface waves extracted from the vertical component recordings. We reconstruct and show, for the first time in the southeastern Cape Karoo, estimates of Green's function from cross-correlating ambient noise data between stations pairs, which can be successfully used to image the subsurface. The stacked cross-correlations between all station pairs show clear arrivals of the Rayleigh surface waves. The group velocities of the Rayleigh waves in the 3 to 7 seconds period range were picked and inverted to compute the 2-D group velocity maps. The resulting 2-D group velocity maps at different periods resulted in a group velocity model from approximately 2 to 7 km depth, which shows a high velocity anomaly in the north of the study area, most likely imaging the denser, thick sedimentary basin of the Karoo (Carboniferous-Permian). To the south, the low velocity anomaly could correspond to the overlying Jurassic-Cretaceous sedimentary sequences of the younger Algoa Basin (Uitenhage Group).


2015 ◽  
Vol 120 (2) ◽  
pp. 944-961 ◽  
Author(s):  
Karel N. Dalen ◽  
T. Dylan Mikesell ◽  
Elmer N. Ruigrok ◽  
Kees Wapenaar

Sign in / Sign up

Export Citation Format

Share Document