scholarly journals Reflection images from ambient seismic noise

Geophysics ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. A63-A67 ◽  
Author(s):  
Deyan Draganov ◽  
Xander Campman ◽  
Jan Thorbecke ◽  
Arie Verdel ◽  
Kees Wapenaar

One application of seismic interferometry is to retrieve the impulse response (Green’s function) from crosscorrelation of ambient seismic noise. Various researchers show results for retrieving the surface-wave part of the Green’s function. However, reflection retrieval has proven more challenging. We crosscorrelate ambient seismic noise, recorded along eight parallel lines in the Sirte basin east of Ajdabeya, Libya, to obtain shot gathers that contain reflections. We take advantage of geophone groups to suppress part of the undesired surface-wave noise and apply frequency-wavenumber filtering before crosscorrelation to suppress surface waves further. After comparing the retrieved results with data from an active seismic exploration survey along the same lines, we use the retrieved reflection data to obtain a migrated reflection image of the subsurface.

First Break ◽  
2019 ◽  
Vol 37 (4) ◽  
pp. 83-90
Author(s):  
Soumen Koley ◽  
Henk Jan Bulten ◽  
Jo van den Brand ◽  
Maria Bader ◽  
Frank Linde ◽  
...  

Author(s):  
José Piña-Flores ◽  
Martín Cárdenas-Soto ◽  
Antonio García-Jerez ◽  
Michel Campillo ◽  
Francisco J. Sánchez-Sesma

ABSTRACT Ambient seismic noise (ASN) is becoming of interest for geophysical exploration and engineering seismology, because it is possible to exploit its potential for imaging. Theory asserts that the Green’s function can be retrieved from correlations within a diffuse field. Surface waves are the most conspicuous part of Green’s function in layered media. Thus, the velocities of surface waves can be obtained from ASN if the wavefield is diffuse. There is widespread interest in the conditions of emergence and properties of diffuse fields. In the applications, useful approximations of the Green’s function can be obtained from cross correlations of recorded motions of ASN. An elastic field is diffuse if the background illumination is azimuthally uniform and equipartitioned. It happens with the coda waves in earthquakes and has been verified in carefully planned experiments. For one of these data sets, the 1999 Chilpancingo (Mexico) experiment, there are some records of earthquake pre-events that undoubtedly are composed of ASN, so that the processing for coda can be tested on them. We decompose the ASN energies and study their equilibration. The scheme is inspired by the original experiment and uses the ASN recorded in an L-shaped array that allows the computation of spatial derivatives. It requires care in establishing the appropriate ranges for measuring parameters. In this search for robust indicators of diffusivity, we are led to establish that under certain circumstances, the S and P energy equilibration is a process that anticipates the diffusion regime (not necessarily isotropy), which justifies the use of horizontal-to-vertical spectral ratio in the context of diffuse-field theory.


Geophysics ◽  
2014 ◽  
Vol 79 (3) ◽  
pp. WA107-WA115 ◽  
Author(s):  
Filippo Broggini ◽  
Roel Snieder ◽  
Kees Wapenaar

Standard imaging techniques rely on the single scattering assumption. This requires that the recorded data do not include internal multiples, i.e., waves that have bounced multiple times between reflectors before reaching the receivers at the acquisition surface. When multiple reflections are present in the data, standard imaging algorithms incorrectly image them as ghost reflectors. These artifacts can mislead interpreters in locating potential hydrocarbon reservoirs. Recently, we introduced a new approach for retrieving the Green’s function recorded at the acquisition surface due to a virtual source located at depth. We refer to this approach as data-driven wavefield focusing. Additionally, after applying source-receiver reciprocity, this approach allowed us to decompose the Green’s function at a virtual receiver at depth in its downgoing and upgoing components. These wavefields were then used to create a ghost-free image of the medium with either crosscorrelation or multidimensional deconvolution, presenting an advantage over standard prestack migration. We tested the robustness of our approach when an erroneous background velocity model is used to estimate the first-arriving waves, which are a required input for the data-driven wavefield focusing process. We tested the new method with a numerical example based on a modification of the Amoco model.


2014 ◽  
Vol 199 (3) ◽  
pp. 1367-1371 ◽  
Author(s):  
Kees Wapenaar ◽  
Evert Slob

Abstract Recent work on the Marchenko equation has shown that the scalar 3-D Green's function for a virtual source in the subsurface can be retrieved from the single-sided reflection response at the surface and an estimate of the direct arrival. Here, we discuss the first steps towards extending this result to multicomponent data. After introducing a unified multicomponent 3-D Green's function representation, we analyse its 1-D version for elastodynamic waves in more detail. It follows that the main additional requirement is that the multicomponent direct arrival, needed to initiate the iterative solution of the Marchenko equation, includes the forward-scattered field. Under this and other conditions, the multicomponent Green's function can be retrieved from single-sided reflection data, and this is demonstrated with a 1-D numerical example.


2015 ◽  
Vol 13 (5) ◽  
pp. 447-455 ◽  
Author(s):  
Taghi Shirzad ◽  
Z. Hossein Shomali ◽  
Mojtaba Naghavi ◽  
Rahim Norouzi

2008 ◽  
Vol 9 (5) ◽  
pp. n/a-n/a ◽  
Author(s):  
Sihua Zheng ◽  
Xinlei Sun ◽  
Xiaodong Song ◽  
Yingjie Yang ◽  
Michael H. Ritzwoller

Sign in / Sign up

Export Citation Format

Share Document