Narrow Rupture of the 2020 Mw 7.4 La Crucecita, Mexico, Earthquake

Author(s):  
Rumeng Guo ◽  
Hongfeng Yang ◽  
Yifan Zhu ◽  
Yong Zheng ◽  
Jianqiao Xu ◽  
...  

Abstract On 23 June 2020, a large (Mw 7.4) interplate thrust earthquake struck near the town of La Crucecita in the state of Oaxaca in southern Mexico, following a 55-yr interseismic period. A seismic source model is well constrained by teleseismic waveforms, static Global Positioning System offsets, and tsunami data, suggesting that the earthquake occurred on the slab interface at a dip of ∼23°, with a narrow elliptical asperity concentrating around a shallow depth of ∼20  km. The rupture propagates bilaterally from the hypocenter, and the down-dip rupture is restricted to ∼25  km by slow slip events (SSEs). The down-dip shear stress is released by SSEs during the interseismic period, limiting the earthquake magnitude and possibly resulting in the characteristic earthquake. The 2020 La Crucecita event, thus, is a good reminder to assess the seismic and tsunami potential in this region. The stress changes caused by the coseismic slip of the 2017 Mw 8.2 Chiapas earthquake are too small to trigger the 2020 La Crucecita earthquake. However, combined with the postseismic afterslip effects that play a leading role, it greatly promotes the eventual occurrence of the La Crucecita event. The results demonstrate the importance of considering postseismic afterslip, when evaluating seismic hazard and its migratory pattern.


2005 ◽  
Vol 43 (2) ◽  
pp. 248-256 ◽  
Author(s):  
S.A. Ketcham ◽  
M.L. Moran ◽  
J. Lacombe ◽  
R.J. Greenfield ◽  
T.S. Anderson


2012 ◽  
Vol 28 (3) ◽  
pp. 1291-1296 ◽  
Author(s):  
Roger Musson

An objection sometimes made against treating the weights of logic tree branches as probabilities relates to the Kolmogorov axioms, but these are only an obstacle if one believes that logic tree branches represent a seismic source model or ground motion model as being “true.” Models are never true, but some models are better than others. It is argued here that a logic tree weight represents the probability that the model in question is better than the others considered. Only one branch can be the best one, and one branch must be the best one. It is also argued that there are situations in PSHA where uncertainty exists but the analyst lacks the means to express it. Therefore it is not necessarily the case that more information increases uncertainty; it may be that more information increases the possibility of expressing uncertainty that was previously unmanageable.



2018 ◽  
Vol 11 (15) ◽  
Author(s):  
I. El-Hussain ◽  
Y. Al-Shijbi ◽  
A. Deif ◽  
A. M. E. Mohamed ◽  
M. Ezzelarab


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Qian Xu ◽  
Zhong-Qi Wang

To reveal the characteristics and laws of the seismic wavefield amplitude-frequency excited by explosive source, the method for computing the seismic wave spectrum excited by explosive was studied in this paper. The model for calculating the seismic wave spectrum excited by explosive source was acquired by taking the seismic source model of spherical cavity as the basis. The results of using this model show that the main frequency and the bandwidth of the seismic waves caused by the explosion are influenced by the initial detonation pressure, the adiabatic expansion of the explosive, and the geotechnical parameters, which increase with the reduction of initial detonation pressure and the increase of the adiabatic expansion. The main frequency and the bandwidth of the seismic waves formed by the detonation of the explosives in the silt clay increase by 23.2% and 13.6% compared to those exploded in the silt. The research shows that the theoretical model built up in this study can describe the characteristics of the seismic wave spectrum excited by explosive in a comparatively accurate way.







2012 ◽  
Vol 12 ◽  
pp. 4_308-4_318
Author(s):  
Shinichi AKIYAMA ◽  
Kaoru KAWAJI ◽  
Mariko KORENAGA ◽  
Satoru FUJIHARA ◽  
Takahiro TAMIYA


1996 ◽  
Vol 86 (5) ◽  
pp. 1372-1381 ◽  
Author(s):  
Tianqing Cao ◽  
Mark D. Petersen ◽  
Michael S. Reichle

Abstract We analyzed the historical seismicity in southern California to develop a rational approach for calculating the seismic hazard from background seismicity of magnitude 6.5 or smaller. The basic assumption for the approach is that future earthquakes will be clustered spatially near locations of historical mainshocks of magnitudes equal to or greater than 4. We analyzed the declustered California seismicity catalog to compute the rate of earthquakes on a grid and then smoothed these rates to account for the spatial distribution of future earthquakes. To find a suitable spatial smoothing function, we studied the distance (r) correlation for southern California earthquakes and found that they follow a 1/rµ power-law relation, where µ increases with magnitude. This result suggests that larger events are more clustered in space than smaller earthquakes. Assuming the seismicity follows the Gutenberg-Richter distribution, we calculated peak ground accelerations (PGA) for 10% probability of exceedance in 50 yr. PGA estimates range between 0.25 and 0.35 g across much of southern California. These ground-motion levels are generally less than half the levels of hazard that are obtained using the entire seismic source model that also includes geologic and geodetic data. We also calculated the overall uncertainty for the hazard map using a Monte Carlo method and found that the coefficient of variation is about 0.24 ± 0.01 for much of the region.



Sign in / Sign up

Export Citation Format

Share Document