seismicity catalog
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 7)

H-INDEX

5
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Simone Cesca ◽  
Daniel Stich ◽  
Francesco Grigoli ◽  
Alessandro Vuan ◽  
José Ángel López-Comino ◽  
...  

AbstractThe 2013 seismic sequence at the Castor injection platform offshore Spain, including three earthquakes of magnitude 4.1, occurred during the initial filling of a planned Underground Gas Storage facility. The Castor sequence is one of the most important cases of induced seismicity in Europe and a rare example of seismicity induced by gas injection into a depleted oil field. Here we use advanced seismological techniques applied to an enhanced waveform dataset, to resolve the geometry of the faults, develop a greatly enlarged seismicity catalog and record details of the rupture kinematics. The sequence occurred by progressive fault failure and unlocking, with seismicity initially migrating away from the injection points, triggered by pore pressure diffusion, and then back again, breaking larger asperities loaded to higher stress and producing the largest earthquakes. Seismicity occurred almost exclusively on a secondary fault, located below the reservoir, dipping opposite from the reservoir bounding fault.


2020 ◽  
Vol 92 (1) ◽  
pp. 583-598
Author(s):  
Yacine Benjelloun ◽  
Julia de Sigoyer ◽  
Hélène Dessales ◽  
Laurent Baillet ◽  
Philippe Guéguen ◽  
...  

Abstract The city of İznik (ancient Nicaea), located on the middle strand of the North Anatolian fault zone (MNAF), presents outstanding archeological monuments preserved from the Roman and Ottoman periods (first to fifteenth centuries A.D.), bearing deformations that can be linked to past seismic shaking. To constrain the date and intensity of these historical earthquakes, a systematic survey of earthquake archeological effects (EAEs) is carried out on the city’s damaged buildings. Each of the 235 EAEs found is given a quality ranking, and the corresponding damage is classified according to the European Macroseismic Scale 1998 (EMS-98). We show that the walls oriented north–south were preferentially damaged, and that most deformations are perpendicular to the walls’ axes. The date of postseismic repairs is constrained with available archeological data and new C14 dating of mortar charcoals. Three damage episodes are evidenced: (1) between the sixth and late eighth centuries, (2) between the nineth and late eleventh centuries A.D., and (3) after the late fourteenth century A.D. The repartition of damage as a function of building vulnerability points toward a global intensity VIII on the EMS-98. The 3D modeling of a deformed Roman obelisk shows that only earthquakes rupturing the MNAF can account for this deformation. Their magnitude can be bracketed between Mw 6 and 7. Our archeoseismological study complements the historical seismicity catalog and confirms paleoseismological data, suggesting several destructive earthquakes along the MNAF, since the first century A.D. We suggest the fault might still have accumulated enough stress to generate an Mw 7+ rupture.


2020 ◽  
Author(s):  
Sezim Ezgi Guvercin ◽  
Hayrullah Karabulut ◽  
Ugur Dogan ◽  
Ziyadin Cakir ◽  
Semih Ergintav ◽  
...  

<p>The seismotectonic behavior of the Eastern Anatolia is predominantly controlled by the East Anatolian Fault (EAF). Together with the North Anatolian Fault (NAF), this ~400 km long sinistral transform fault, accommodates the westward motion of Anatolia between Anatolian and Arabian plates with a slip rate of ~10 mm/yr which is significantly slower than the motion of the NAF (25 mm/yr). Although this two major faults are similar in terms of the migration of the large earthquakes from east to west, the present seismicity of the EAF is high compared to the NAF. Except for the several earthquakes with Mw > 5, there were no devastating earthquakes during the instrumental period along the EAF. The absence of large earthquakes during the last ~50 years along the EAF indicates presence of significant seismic gaps and potential seismic hazard in the region. Recent studies indicate segmentation of the EAF with varying lengths of creeping and locked segments. Some details of the geometries and the slip rates of these segments have been estimated by the InSAR observations. Both InSAR and GPS observations indicate that the maximum creep along this the EAF is ~10 mm/yr, approximately the slip rate of the EAF.</p><p>While both geodetic data verify the existence of creep from surface deformation, its relation to the seismic behavior of the EAF is less clear. There is a ~30 km long creeping segment to the north-east of Lake Hazar which generates no significant seismicity. On the other hand, another creeping segment to the south-west of Lake Hazar, there are repeating events, below the depth of 10 km, with a horizontal extent of 15 km. The highly fractured and complex structure of this fault zone is also confirmed by the available focal mechanisms which shows significant variety.</p><p>In this study, we update seismicity catalog with improved locations to date and present a uniform and high quality focal mechanism catalog down to M4 completeness, using regional waveforms. The seismicity catalog is used to estimate the geometry of the segmentation while the novel earthquake source mechanisms are used to understand the kinematics of the segments and interactions. Moreover, we present the latest M4.9, 2019, Sivrice earthquake, pointing out a location where the stress is perturbed due to a transition from creeping segment to locked segment. (Supported by TUBITAK no: 118Y435 project)</p>


2020 ◽  
Author(s):  
Hayrullah Karabulut ◽  
Olivier Lengliné ◽  
Jean Schmittbuhl ◽  
Emanuela Matrullo ◽  
Michel Bouchon

<p>A massive template-matching approach is successfully applied in Marmara Sea region along  the North Anatolian Fault, during the 2009-2014 period to enrich the description of the time and space evolution of the seismicity. Detection of events are performed on the continuous data recorded from 2009 to 2014 combining two types of catalogs as templates: a finely constructed catalog for the three first year (2009-2011) (Schmittbuhl et al, 2016) and a raw catalog from KOERI for the last three years (2012-2014).  Magnitudes (Ml) are estimated for all detected events using relative amplitudes of the highly coherent waveforms between new events and template events. The template database provides a nearly threefold increase of the number of small events (more than 15000 earthquakes compare to the 4673 events of the initial catalog). Combined with a double-difference relocation based on cross-correlation differential travel-time data, the database is shown to be a relevant framework for the long term monitoring of specific remanent structures like seismic swarms or repeating earthquakes. The obtained catalog confirms the strong contrast of behaviors along the Main Marmara Fault (MMF): deep creeping to the west (Central Basin), fully locked in the center (Kumburgaz Basin) and dominated by fluid and off-fault activity to the east (Cinarcik Basin).</p>


2019 ◽  
Vol 109 (6) ◽  
pp. 2356-2366 ◽  
Author(s):  
Ganyu Teng ◽  
Jack W. Baker

Abstract This study is an evaluation of the suitability of several declustering method for induced seismicity and their impacts on hazard analysis of the Oklahoma–Kansas region. We considered the methods proposed by Gardner and Knopoff (1974), Reasenberg (1985), Zaliapin and Ben‐Zion (2013), and the stochastic declustering method (Zhuang et al., 2002) based on the epidemic‐type aftershock sequence (ETAS) model (Ogata, 1988, 1998). The results show that the choice of declustering method has a significant impact on the declustered catalog and the resulting hazard analysis of the Oklahoma–Kansas region. The Gardner and Knopoff method, which is currently implemented in the U.S. Geological Survey one‐year seismic‐hazard forecast for the central and eastern United States, has unexpected features when used for this induced seismicity catalog. It removes 80% of earthquakes and fails to reflect the changes in background rates that have occurred in the past few years. This results in a slight increase in the hazard level from 2016 to 2017, despite a decrease in seismic activities in 2017. The Gardner and Knopoff method also frequently identifies aftershocks with much stronger shaking intensities than their associated mainshocks. These features are mostly due to the window method implemented in the Gardner and Knopoff method. Compared with the Gardner and Knopoff method, the other three methods are able to capture the changing hazard level in the region. However, the ETAS model potentially overestimates the foreshock effect and generates negligible probabilities of large earthquakes being mainshocks. The Reasenberg and Zaliapin and Ben‐Zion methods have similar performance on catalog declustering and hazard analysis. Compared with the ETAS method, these two methods are easier to implement and faster to generate the declustered catalog. The results from this study suggest that both Reasenberg and Zaliapin and Ben‐Zion declustering methods are suitable for declustering and hazard analysis for induced seismicity in the Oklahoma–Kansas region.


2019 ◽  
Vol 109 (3) ◽  
pp. 1125-1147 ◽  
Author(s):  
Martin Knapmeyer ◽  
Brigitte Knapmeyer‐Endrun ◽  
Ana‐Catalina Plesa ◽  
Maren Böse ◽  
Taichi Kawamura ◽  
...  

2019 ◽  
Vol 116 (15) ◽  
pp. 7198-7206 ◽  
Author(s):  
Shannon L. Fasola ◽  
Michael R. Brudzinski ◽  
Stephen G. Holtkamp ◽  
Shannon E. Graham ◽  
Enrique Cabral-Cano

The Mexican subduction zone is an ideal location for studying subduction processes due to the short trench-to-coast distances that bring broad portions of the seismogenic and transition zones of the plate interface inland. Using a recently generated seismicity catalog from a local network in Oaxaca, we identified 20 swarms of earthquakes (M < 5) from 2006 to 2012. Swarms outline what appears to be a steeply dipping structure in the overriding plate, indicative of an origin other than the plate interface. This steeply dipping structure corresponds to the northern boundary of the Xolapa terrane. In addition, we observed an interesting characteristic of slow slip events (SSEs) where they showed a shift from trenchward motion toward an along-strike direction at coastal GPS sites. A majority of the swarms were found to correspond in time to the along-strike shift. We propose that swarms and SSEs are occurring on a sliver fault that allows the oblique convergence to be partitioned into trench-perpendicular motion on the subduction interface and trench-parallel motion on the sliver fault. The resistivity structure surrounding the sliver fault suggests that SSEs and swarms of earthquakes occur due to high fluid content in the fault zone. We propose that the sliver fault provides a natural pathway for buoyant fluids attempting to migrate upward after being released from the downgoing plate. Thus, sliver faults could be responsible for the downdip end of the seismogenic zone by creating drier conditions on the subduction interface trenchward of the sliver fault, promoting fast-slip seismogenic rupture behavior.


2017 ◽  
Vol 56 (1) ◽  
Author(s):  
José Antonio Bayona Viveros ◽  
Gerardo Suárez Reynoso ◽  
Mario Gustavo Ordaz Schroeder

The Trans-Mexican Volcanic Belt (TMVB) is an active volcanic chain being deformed by an intra-arc extensional fault network. Although several crustal earthquakes with magnitude>7 have originated in the TMVB since the 16th century, the background seismicity of this geological structure is very low and the region is usually considered of low seismic hazard. In this study, we present an updated probabilistic seismic hazard model of the TMVB. The seismicity catalog used here includes forty-three historically and instrumentally recorded earthquakes, from 1858 to 2014; five of these are large earthquakes that occurred in the TMVB during the XIXth century. Due to the lack of a statically representative sample, we propose, in a qualitative manner, the seismicity catalog is complete for M≥4 since 1964 and for M≥6 since 1858. Moreover, we introduce three different earthquake frequency-magnitude relations. The first one is a conventional Gutenberg Richter fit of the distribution of the instrumentally recorded earthquakes data. The other two are non-conventional, semi-parametric approaches that integrate the historical and the instrumental data to determine seismicity rates in the region. Our preferred model (seismicity model B) fits separately the instrumental and the historical data and merge the two fits into one curve. A uniform seismic hazard (USH) of the TMVB for a return period of 500 years was calculated considering three major sources of earthquakes: 1) Subduction thrust-faulting events in the Middle American Trench (MAT); 2) Earthquakes within the subducted Cocos plate and, 3) Shallow crustal earthquakes in the TMVB. According to the seismicity model B, the average recurrence time of a M≥7 earthqua-ke on the TMVB is approximately 150 years. In contrast, the recurrence time estimated from the instrumental catalog is 12,000 years. The results of this seismicity model, which is based on historical and instrumental data, agrees also with the return periods of prehistoric earthquakes, estimated for short segments of the fault system in the TMVB in paleoseismological studies. When comparing the results of our preferred seismicity model, the PGA estimated using only the instrumental seismicity are 18 to 56% smaller than those predicted by the model using the historical catalog.


2014 ◽  
Vol 9 (3) ◽  
pp. 264-271 ◽  
Author(s):  
Satoshi Ide ◽  
◽  
Hideo Aochi ◽  

Earthquakes occur in a complex hierarchical fault system, meaning that a realistic mechanically-consistent model is required to describe heterogeneity simply and over a wide scale. We developed a simple conceptual mechanical model using fractal circular patches associated with fracture energy on a fault plane. This model explains the complexity and scaling relation in the dynamic rupture process. We also show that such a fractal patch model is useful in simulating longterm seismicity in a hierarchal fault system by using external loading. In these studies, an earthquake of any magnitude appears as a completely random cascade growing from a small patch to larger patches. This model is thus potentially useful as a benchmarking scenario for evaluating probabilistic gain in probabilistic earthquake forecasts. The model is applied to the real case of the 2011 Tohoku-Oki earthquake based on prior information from a seismicity catalog to reproduce the complex rupture process of this very large earthquake and its resulting ground motion. Provided that a high-quality seismicity catalog is available for other regions, similar approach using this conceptual model may provide scenarios for other potential large earthquakes.


Sign in / Sign up

Export Citation Format

Share Document