great valley
Recently Published Documents


TOTAL DOCUMENTS

225
(FIVE YEARS 22)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Katie KellerLynn

Geologic Resources Inventory reports provide information and resources to help park managers make decisions for visitor safety, planning and protection of infrastructure, and preservation of natural and cultural resources. Information in GRI reports may also be useful for interpretation. This report synthesizes discussions from a scoping meeting held in 2007 and a follow-up conference call in 2020. Chapters of this report discuss the geologic heritage, geologic features and processes, and geologic resource management issues of John Muir National Historic Site. Guidance for resource management and information about the previously completed GRI map data is also provided. A GRI map poster (separate product) illustrate the GRI map data. Geologic features, processes, and resource management issues identified include the Great Valley sequence, an unconformity, the Martinez Formation, the San Andreas Fault, an anticline, fluvial features and processes, erosion, flooding, slope movements, earthquakes, climate change, and paleontological resources.


2021 ◽  
Author(s):  
John Wakabayashi

ABSTRACT Franciscan subduction complex rocks of Mount Diablo form an 8.5 by 4.5 km tectonic window, elongated E-W and fault-bounded to the north and south by rocks of the Coast Range ophiolite and Great Valley Group, respectively, which lack the burial metamorphism and deformation displayed by the Franciscan complex. Most of the Franciscan complex consists of a stack of lawsonite-albite–facies pillow basalt overlain successively by chert and clastic sedimentary rocks, repeated by faults at hundreds of meters to <1 m spacing. Widely distributed mélange zones from 0.5 to 300 m thick containing high-grade (including amphibolite and eclogite) assemblages and other exotic blocks, up to 120 m size, form a small fraction of exposures. Nearly all clastic rocks have a foliation, parallel to faults that repeat the various lithologies, whereas chert and basalt lack foliation. Lawsonite grew parallel to foliation and as later grains across foliation. The Franciscan-bounding faults, collectively called the Coast Range fault, strike ENE to WNW and dip northward at low to moderate average angles and collectively form a south-vergent overturned anticline. Splays of the Coast Range fault also cut into the Franciscan strata and Coast Range ophiolite and locally form the Coast Range ophiolite–Great Valley Group boundary. Dip discordance between the Coast Range fault and overlying Great Valley Group strata indicates that the northern and southern Coast Range fault segments were normal faults with opposite dip directions, forming a structural dome. These relationships suggest accretion and fault stacking of the Franciscan complex, followed by exhumation along the Coast Range fault and then folding of the Coast Range fault.


Author(s):  
Raymond Sullivan ◽  
Ryan P. Fay ◽  
Carl Schaefer ◽  
Alan Deino ◽  
Stephen W. Edwards

ABSTRACT Two spatially separated areas of Neogene volcanic rocks are located on the northeast limb of the Mount Diablo anticline. The southernmost outcrops of volcanics are 6 km east of the summit of Mount Diablo in the Marsh Creek area and consist of ~12 hypabyssal dacite intrusions dated at ca. 7.8–7.5 Ma, which were intruded into the Great Valley Group of Late Cretaceous age. The intrusions occur in the vicinity of the Clayton and Diablo faults. The rocks are predominantly calc-alkaline plagioclase biotite dacites, but one is a tholeiitic plagioclase andesite. Mercury mineralization was likely concomitant with emplacement of these late Miocene intrusions. The northern most outcrops of Neogene volcanic rocks occur ~15 km to the north of Mount Diablo in the Concord Naval Weapons Station and the Los Medanos Hills and are probably parts of a single andesite flow. A magnetometer survey indicates that the flow originated from a feeder dike along the Clayton fault. The lava flow is flat-lying and occu pies ancient stream channels across an erosional surface of tilted Markley Sandstone of middle Eocene age. New radiometric dates of the flow yield an age of 5.8–5.5 Ma, but due to alteration the age should be used with caution. The flow is a calc-alkaline andesite rich in clinopyroxene and plagioclase. What appear to be uplifted erosional remnants of the flow can be traced northeastward in the Los Medanos Hills across a surface of tilted Cenozoic rocks that eventually rest on formations as young as the Lawlor Tuff dated at 4.865 ± 0.011 Ma. This stratigraphic relationship suggests that the andesite flow is probably late Pliocene in age and was impacted by the more recent uplift of the Los Medanos Hills but postdates the regional folding and faulting of the rocks of Mount Diablo. In terms of timing, location, and composition, the evidence suggests these two areas of dacitic and andesitic volcanics fit into a series of migrating volcanic centers in the California Coast Ranges that erupted following the northward passage of the Mendocino Triple Junction.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
K. A. McKenzie ◽  
K. P. Furlong

AbstractSeveral tectonic processes combine to produce the crustal deformation observed across the Cascadia margin: (1) Cascadia subduction, (2) the northward propagation of the Mendocino Triple Junction (MTJ), (3) the translation of the Sierra Nevada–Great Valley (SNGV) block along the Eastern California Shear Zone–Walker Lane and, (3) extension in the northwestern Basin and Range, east of the Cascade Arc. The superposition of deformation associated with these processes produces the present-day GPS velocity field. North of ~ 45° N observed crustal displacements are consistent with inter-seismic subduction coupling. South of ~ 45° N, NNW-directed crustal shortening produced by the Mendocino crustal conveyor (MCC) and deformation associated with SNGV-block motion overprint the NE-directed Cascadia subduction coupling signal. Embedded in this overall pattern of crustal deformation is the rigid translation of the Klamath terrane, bounded on its north and west by localized zones of deformation. Since the MCC and SNGV processes migrate northward, their impact on the crustal deformation in southern Cascadia is a relatively recent phenomenon, since ~ 2 –3 Ma.


2021 ◽  
Vol 226 (1) ◽  
pp. 287-301
Author(s):  
Yongsheng Liu ◽  
Ping Tong

SUMMARY Delineating spatial variations of seismic anisotropy in the crust is of great importance for the understanding of structural heterogeneities, regional stress regime and ongoing crustal dynamics. In this study, we present a 3-D anisotropic P-wave velocity model of the crust beneath northern California by using the eikonal equation-based seismic azimuthal anisotropy tomography method. The velocity heterogeneities under different geological units are well resolved. The thickness of the low-velocity sediment at the Great Valley Sequence is estimated to be about 10 km. The high-velocity anomaly underlying Great Valley probably indicates the existence of ophiolite bodies. Strong velocity contrasts are revealed across the Hayward Fault (2–9 km) and San Andreas Fault (2–12 km). In the upper crust (2–9 km), the fast velocity directions (FVDs) are generally fault-parallel in the northern Coast Range, which may be caused by geological structure; while the FVDs are mainly NE–SW in Great Valley and the northern Sierra Nevada possibly due to the regional maximum horizontal compressive stress. In contrast, seismic anisotropy in the mid-lower crust (12–22 km) may be attributed to the alignment of mica schists. The anisotropy contrast across the San Andreas Fault may imply different mechanisms of crustal deformation on the two sides of the fault. Both the strong velocity contrasts and the high angle (∼45° or above) between the FVDs and the strikes of faults suggest that the faults are mechanically weak in the San Francisco bay area (2–6 km). This study suggests that the eikonal equation-based seismic azimuthal anisotropy tomography is a valuable tool to investigate crustal heterogeneities and tectonic deformation.


Author(s):  
Lise Retailleau ◽  
Gregory C Beroza

Summary Correlations of the ambient seismic field recorded by seismic stations carry information about the wave propagation between the stations. They also contain information about the ambient field - both the source of the ambient field, and sources of scattering that contribute to it. The waves that comprise the ambient field are subject to scattering due to the heterogeneous Earth, which can generate supplementary arrivals on the correlation functions. We use these effects to locate sources of signals linked to scattering. For this analysis, we use correlation functions computed from continuous signals recorded between 2013 and 2015 by a line of seismic stations in Central California. We identify spurious arrivals on the Vertical to Vertical and Transverse to Transverse correlation functions and use array analysis to map the source of scattering, which is linked to strong structural variations in the Coast ranges and at the border of the Great Valley.


Geology ◽  
2020 ◽  
Author(s):  
Stephen Angster ◽  
Steven Wesnousky ◽  
Paula Figueiredo ◽  
Lewis A. Owen ◽  
Thomas Sawyer

Topographic profiles across late Quaternary surfaces in the northern Sacramento Valley (California, USA) show offset and progressive folding on series of active east- and northeast—trending faults and folds. Optically stimulated luminescence ages on deposits draping a warped late Pleistocene river terrace yielded differential incision rates along the Sacramento River and indicate tectonic uplift equal to 0.2 ± 0.1 and 0.6 ± 0.2 mm/yr above the anticline of the Inks Creek fold system and Red Bluff fault, respectively. Uplift rates correspond to a total of 1.3 ± 0.4 mm/yr of north-directed crustal shortening, accounting for all of the geodetically observed contractional strain in the northern Sacramento Valley, but only part of the far-field contraction between the Sierra Nevada–Great Valley and Oregon Coast blocks. These structures define the southern limit of the transpressional transition between the two blocks.


2020 ◽  
Author(s):  
D. Lammie ◽  
et al.

Plate 1. (A and B) Balanced (A) and restored (B) cross section A-A' extending from the eastern Great Valley westward to the Burning Spring anticline (Fig. 1). Total deformed length (274 km) and undeformed restored length (346 km) are measured from a pin line east of the extent of documented map-scale shortening on the Appalachian Plateau, resulting in 78 km (23%) total shortening. (C) As shown, shortening in Upper Devonian through Permian rocks assumes 10% layer-parallel shortening (LPS) in the Appalachian Plateau and across the Appalachian front (to thick vertical bar) and 25% LPS in the Valley and Ridge (region between thick vertical bars). Shortening in the Great Valley requires 35% LPS, compared to the >50% LPS measured in that region (Wright and Platt, 1982). Cross sections drawn with no vertical exaggeration; Circled numbers—duplex numbers; Fm–Formation; Gp—Group. Plate 2. Geologic cross section divided into 16 sequentially numbered intervals (circled numbers above the cross section) spanning from the western limb of the Burning Springs anticline eastward to the Great Valley. Locations of each of the 40 samples used to constrain grain-scale layer-parallel shortening (LPS) are shown as small white dots projected into the line of section; calculated LPS (as a percentage) are shown above each sample. Mean LPS values for each interval are summarized in Table 2. (A) Cross section constructed to minimize the amount of unit thickness variation in the Reedsville-Martinsburg Formations. Balancing this section requires 10% outcrop-scale shortening between the Elkins Valley anticline and the boundary between the Valley and Ridge and Great Valley. (B) Cross section constructed to minimize contributions from outcrop-scale shortening. Balancing this section requires 5% outcrop-scale shortening between the Elkins Valley anticline and the boundary between the Valley and Ridge and Great Valley. Cross sections drawn with no vertical exaggeration; circled numbers—duplex numbers; Fm—Formation; Gp—Group.


2020 ◽  
Author(s):  
D. Lammie ◽  
et al.

Plate 1. (A and B) Balanced (A) and restored (B) cross section A-A' extending from the eastern Great Valley westward to the Burning Spring anticline (Fig. 1). Total deformed length (274 km) and undeformed restored length (346 km) are measured from a pin line east of the extent of documented map-scale shortening on the Appalachian Plateau, resulting in 78 km (23%) total shortening. (C) As shown, shortening in Upper Devonian through Permian rocks assumes 10% layer-parallel shortening (LPS) in the Appalachian Plateau and across the Appalachian front (to thick vertical bar) and 25% LPS in the Valley and Ridge (region between thick vertical bars). Shortening in the Great Valley requires 35% LPS, compared to the >50% LPS measured in that region (Wright and Platt, 1982). Cross sections drawn with no vertical exaggeration; Circled numbers—duplex numbers; Fm–Formation; Gp—Group. Plate 2. Geologic cross section divided into 16 sequentially numbered intervals (circled numbers above the cross section) spanning from the western limb of the Burning Springs anticline eastward to the Great Valley. Locations of each of the 40 samples used to constrain grain-scale layer-parallel shortening (LPS) are shown as small white dots projected into the line of section; calculated LPS (as a percentage) are shown above each sample. Mean LPS values for each interval are summarized in Table 2. (A) Cross section constructed to minimize the amount of unit thickness variation in the Reedsville-Martinsburg Formations. Balancing this section requires 10% outcrop-scale shortening between the Elkins Valley anticline and the boundary between the Valley and Ridge and Great Valley. (B) Cross section constructed to minimize contributions from outcrop-scale shortening. Balancing this section requires 5% outcrop-scale shortening between the Elkins Valley anticline and the boundary between the Valley and Ridge and Great Valley. Cross sections drawn with no vertical exaggeration; circled numbers—duplex numbers; Fm—Formation; Gp—Group.


Sign in / Sign up

Export Citation Format

Share Document