Identification of Changes in the Entropy of Seismic Signals Preceding an Event through Higher Order Zero-crossing Analysis

2009 ◽  
Vol 80 (3) ◽  
pp. 473-478 ◽  
Author(s):  
P. A. Dickstein
2003 ◽  
Author(s):  
Dalton S. Rosario ◽  
Nasser M. Nasrabadi

1999 ◽  
Vol 9 (5) ◽  
pp. 527-564 ◽  
Author(s):  
P. RONDOGIANNIS ◽  
W. W. WADGE

In this paper we demonstrate that a broad class of higher-order functional programs can be transformed into semantically equivalent multidimensional intensional programs that contain only nullary variable definitions. The proposed algorithm systematically eliminates user-defined functions from the source program, by appropriately introducing context manipulation (i.e. intensional) operators. The transformation takes place in M steps, where M is the order of the initial functional program. During each step the order of the program is reduced by one, and the final outcome of the algorithm is an M-dimensional intensional program of order zero. As the resulting intensional code can be executed in a purely tagged-dataflow way, the proposed approach offers a promising new technique for the implementation of higher-order functional languages.


1984 ◽  
Vol 57 (5) ◽  
pp. 1439-1447 ◽  
Author(s):  
J. Clement ◽  
H. Bobbaers ◽  
K. P. Van de Woestijne

The frequency dependence of pulmonary compliance and resistance was investigated in 27 patients with obstructive lung disease. Compliance and resistance were determined either by the conventional zero crossing (Cdyn) and isovolume (RL) technique or by a modified Fourier analysis following a smoothing procedure (auto- and cross-correlation function) yielding an effective compliance and resistance, CL and RL. The latter technique was used to calculate CL and RL from the fundamental and third and fourth harmonics present in the flow and transpulmonary pressure signals. Three breathing frequencies were investigated: 0.5, 1, and 2 Hz. Both Cdyn and CL, calculated from the fundamental component, decreased progressively with frequency. However, Cdyn showed less frequency dependence than CL. CL calculated from the harmonics was significantly smaller than CL from the fundamental at the same breathing frequency. RL, as well as RL calculated from the fundamental, tended to increase with frequency. A decline of resistance with frequency became apparent, however, when RL from the fundamental was compared with RL obtained from the corresponding higher order harmonics. These results suggest that the frequency dependence of resistance can be masked by the usual procedure of breathing at several frequencies. Instead the measurements should be performed at a single frequency, for instance spontaneous breathing, by computing resistance from the higher order harmonics present in the breathing signals.


Sign in / Sign up

Export Citation Format

Share Document