scholarly journals Slant and Hemislant Submanifolds of a 3-Dimensional Indefinite Trans-Sasakian Manifold

Author(s):  
Barnali Laha

In this paper we would like to establish some of the properties of slant and hemislant submanifoldsof an indefinite trans-Sasakian manifold. We have four sections in this paper. Section (1) isintroductory. In Section (2) we recall some necessary details of an indefinite trans-Sasakian manifold.In Section (3) we have obtained some interesting properties on a totally umbilical slant submanifoldsof an indefinite trans-Sasakian manifold. Finally, in Section (4), some results on integrability conditionsof the distributions of hemislant submanifolds of an indefinite trans-Sasakian manifold havebeen obtained.

2019 ◽  
Vol 16 (03) ◽  
pp. 1950039 ◽  
Author(s):  
V. Venkatesha ◽  
Devaraja Mallesha Naik

If [Formula: see text] is a 3-dimensional contact metric manifold such that [Formula: see text] which admits a Yamabe soliton [Formula: see text] with the flow vector field [Formula: see text] pointwise collinear with the Reeb vector field [Formula: see text], then we show that the scalar curvature is constant and the manifold is Sasakian. Moreover, we prove that if [Formula: see text] is endowed with a Yamabe soliton [Formula: see text], then either [Formula: see text] is flat or it has constant scalar curvature and the flow vector field [Formula: see text] is Killing. Furthermore, we show that if [Formula: see text] is non-flat, then either [Formula: see text] is a Sasakian manifold of constant curvature [Formula: see text] or [Formula: see text] is an infinitesimal automorphism of the contact metric structure on [Formula: see text].


Author(s):  
Gizem Köprülü ◽  
Bayram Şahin

The purpose of this paper is to study anti-invariant Riemannian submersions from Sasakian manifolds onto Riemannian manifolds such that characteristic vector field is vertical or horizontal vector field. We first show that any anti-invariant Riemannian submersions from Sasakian manifold is not a Riemannian submersion with totally umbilical fiber. Then we introduce anti-invariant Riemannian submersions from Sasakian manifolds with totally contact umbilical fibers. We investigate the totally contact geodesicity of fibers of such submersions. Moreover, under this condition, we investigate Ricci curvature of anti-invariant Riemannian submersions from Sasakian manifolds onto Riemannian manifolds.


BIBECHANA ◽  
2020 ◽  
Vol 17 ◽  
pp. 110-116
Author(s):  
Riddhi Jung Shah

In this paper we study Ricci solitons in Lorentzian para-Sasakian manifolds. It is proved that the Ricci soliton in a (2n+1)-dimensinal LP-Sasakian manifold is shrinking. It is also shown that Ricci solitons in an LP-Sasakian manifold satisfying the derivation conditions R(ξ,X).W2 =0,W2 (ξ,X).W4 =0 and W4 (ξ,X).W2=0 are shrinking but are steady for the condition W2 (ξ,X).S=0. Finally, we give an example of 3-dimensional LP-Sasakian manifold and prove that the Ricci soliton is expanding and shrinking in this manifold. BIBECHANA 17 (2020) 110-116


2021 ◽  
Vol 13 (2) ◽  
pp. 460-474
Author(s):  
D. Ganguly ◽  
S. Dey ◽  
A. Bhattacharyya

The present paper is to deliberate the class of $3$-dimensional trans-Sasakian manifolds which admits $\eta$-Einstein solitons. We have studied $\eta$-Einstein solitons on $3$-dimensional trans-Sasakian manifolds where the Ricci tensors are Codazzi type and cyclic parallel. We have also discussed some curvature conditions admitting $\eta$-Einstein solitons on $3$-dimensional trans-Sasakian manifolds and the vector field is torse-forming. We have also shown an example of $3$-dimensional trans-Sasakian manifold with respect to $\eta$-Einstein soliton to verify our results.


ISRN Geometry ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Gurupadavva Ingalahalli ◽  
C. S. Bagewadi

We study Ricci solitons in α-Sasakian manifolds. It is shown that a symmetric parallel second order-covariant tensor in a α-Sasakian manifold is a constant multiple of the metric tensor. Using this, it is shown that if ℒVg+2S is parallel where V is a given vector field, then (g,V,λ) is Ricci soliton. Further, by virtue of this result, Ricci solitons for n-dimensional α-Sasakian manifolds are obtained. Next, Ricci solitons for 3-dimensional α-Sasakian manifolds are discussed with an example.


2010 ◽  
Vol 47 (6) ◽  
pp. 1163-1170 ◽  
Author(s):  
Cetin Camci ◽  
H. Hilmi Hacisalihoglu

2011 ◽  
Vol 57 (2) ◽  
pp. 417-440
Author(s):  
Falleh Al-Solamy ◽  
Jeong-Sik Kim ◽  
Mukut Tripathi

On η-Einstein Trans-Sasakian ManifoldsA systematic study of η-Einstein trans-Sasakian manifold is performed. We find eight necessary and sufficient conditions for the structure vector field ζ of a trans-Sasakian manifold to be an eigenvector field of the Ricci operator. We show that for a 3-dimensional almost contact metric manifold (M,φ, ζ, η, g), the conditions of being normal, trans-K-contact, trans-Sasakian are all equivalent to ∇ζ ∘ φ = φ ∘ ∇ζ. In particular, the conditions of being quasi-Sasakian, normal with 0 = 2β = divζ, trans-K-contact of type (α, 0), trans-Sasakian of type (α, 0), andC6-class are all equivalent to ∇ ζ = -αφ, where 2α = Trace(φ∇ζ). In last, we give fifteen necessary and sufficient conditions for a 3-dimensional trans-Sasakian manifold to be η-Einstein.


2017 ◽  
Vol 28 (08) ◽  
pp. 1750064
Author(s):  
Mobin Ahmad ◽  
Shadab Ahmad Khan ◽  
Toukeer Khan

We consider a nearly hyperbolic Sasakian manifold equipped with [Formula: see text]-structure and study non-invariant hypersurface of a nearly hyperbolic Sasakian manifold equipped with [Formula: see text]-structure. We obtain some properties of nearly hyperbolic Sasakian manifold equipped with [Formula: see text]-structure. Further, we find the necessary and sufficient conditions for totally umbilical non-invariant hypersurface with [Formula: see text]-structure of nearly hyperbolic Sasakian manifold to be totally geodesic. We also calculate the second fundamental form of a non-invariant hypersurface of a nearly hyperbolic Sasakian manifold with [Formula: see text]-structure under the condition when f is parallel.


Sign in / Sign up

Export Citation Format

Share Document