scholarly journals EFFECTS OF STEEL FIBRE REINFORCEMENT ON THE BEHAVIOUR OF HEADED STUD SHEAR CONNECTORS FOR COMPOSITE STEEL-CONCRETE BEAMS

2009 ◽  
pp. 72-95
Author(s):  
O. Mirza ◽  
◽  
B. Uy ◽  
2014 ◽  
Vol 5 (1) ◽  
pp. 9-19
Author(s):  
I. Kovács

Abstract The papers of the series deal with experimental characterisation of mechanical as well as structural properties of different steel fibre reinforced concretes that can be used for several structural applications. An extensive experimental programme (six years) has been developed to investigate the effect of steel fibre reinforcement on the mechanical performance and structural behaviour of concrete specimens. Specimens and test methods were selected to be able to detect realistic behaviour of the material, representing clear effect on the structural performance. Material compositions, test methods, type of test specimens will be detailed in the presented paper (Part I). Furthermore, compressive strength (Part II), stress-strain relationship (Part II), splitting strength (Part III) and toughness (Part IV) will also be discussed. In the light of the motivation to determine the structural performances of 1D concrete structural element affected by steel fibre reinforcement, bending and shear behaviour (Part V) as well as serviceability state (Part VI) of steel fibre reinforced concrete beams will be analysed. Since normal force — prestressing force — can affectively be used to improve the structural performances of RC element flexural tests were carried out on prestressed pretensioned steel fibre reinforced concrete beams (Part VII). Moreover, focusing on the in-plane state of stresses for 2D structures, behaviour of steel fibre reinforced concrete deep beams in shear and steel fibre reinforced concrete slabs (Part VIII) in bending will be explained. Finally, based on the wide range of the experimental and analytical studies on the presented field, a new material model for the 1D uniaxial behaviour (Part IX) and its possible extension to the 3D case (Part X) will be described hereafter. All papers will put emphasis on the short literature review of the last four decades.


Author(s):  
Mariusz Maslak ◽  
Tomasz Domanski

Conventional standard procedure used to determine the design value of a headed stud shear resistance in composite steel-concrete beams is very simple but, in fact, mathematically incorrect, particularly in the case when such connector is automatically welded and when it is working in a solid slab. According to this approach the considered value is specified as a minimum of two separate design values. One of them is related to the resistance of the stud itself while the other is associated with the failure of the surrounding concrete. In the paper presented by the authors a new algorithm which allow to evaluate this value is recommended and discussed in detail. It seems to be more accurate because it is based on the fully probabilistic inference. In such approach a new random variable is introduced, being a minimum of two other, statistically independent, random variables. Analogously as it is in the concept previously mentioned, the first random variable quantifies now the steel stud shear resistance whereas the second one – the resistance of the adjacent concrete. Consequently, the sought design value is determined as a suitable quantile of this new random variable, characterized by log-normal probability distribution. It is shown that the design value of a headed stud shear resistance, calculated in this manner, strongly depends on the variability of strength parameters, relating both to the steel of which the connecting stud is made and to the concrete of the slab. In addition, it is found that in the case when the variability of concrete strength is too high, the safety factor recommended to use in European standards is not able to provide the required safety level, acceptable by the building users. The considerations presented in the article are illustrated by a detailed computational example.


2015 ◽  
Vol 114 ◽  
pp. 417-430 ◽  
Author(s):  
Sameera Wijesiri Pathirana ◽  
Brian Uy ◽  
Olivia Mirza ◽  
Xinqun Zhu

2016 ◽  
Vol 114 ◽  
pp. 181-194 ◽  
Author(s):  
Sameera Wijesiri Pathirana ◽  
Brian Uy ◽  
Olivia Mirza ◽  
Xinqun Zhu

Sign in / Sign up

Export Citation Format

Share Document