headed stud
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 32)

H-INDEX

15
(FIVE YEARS 3)

2022 ◽  
Vol 252 ◽  
pp. 113631
Author(s):  
Hao Meng ◽  
Wei Wang ◽  
Rongqiao Xu

2021 ◽  
Author(s):  
Miguel Abambres ◽  
He J

<p>Headed studs are commonly used as shear connectors to transfer longitudinal shear force at the interface between steel and concrete in composite structures (e.g., bridge decks). Code-based equations for predicting the shear capacity of headed studs are summarized. An artificial neural network (ANN)-based analytical model is proposed to estimate the shear capacity of headed steel studs. 234 push-out test results from previous published research were collected into a database in order to feed the simulated ANNs. Three parameters were identified as input variables for the prediction of the headed stud shear force at failure, namely the steel stud tensile strength and diameter, and the concrete (cylinder) compressive strength. The proposed ANN-based analytical model yielded, for all collected data, maximum and mean relative errors of 3.3 % and 0.6 %, respectively. Moreover, it was illustrated that, for that data, the neural network approach clearly outperforms the existing code-based equations, which yield mean errors greater than 13 %.</p>


2021 ◽  
Vol 249 ◽  
pp. 113302
Author(s):  
Jing Zhang ◽  
Xiamin Hu ◽  
Junyi Wu ◽  
Yun Mook Lim ◽  
Shuhong Gong ◽  
...  

ce/papers ◽  
2021 ◽  
Vol 4 (2-4) ◽  
pp. 627-634
Author(s):  
Valentino Vigneri ◽  
Christoph Odenbreit ◽  
Dennis Lam ◽  
François Hanus

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3627
Author(s):  
Sherif A. Elsawaf ◽  
Saleh O. Bamaga

In this paper, the findings of numerical modeling of the composite action between normal concrete and Cold-Formed Steel (CFS) beams are presented. To obtain comprehensive structural behavior, the numerical model was designed using 3-D brick components. The simulation results were correlated to the experimental results of eight push tests, using three types of innovative shear connectors in addition to standard headed stud shear connectors, with two different thicknesses of a CFS channel beam. The proposed numerical model was found to be capable of simulating the failure mode of the push test as well as the behavior of shear connectors in order to provide composite action between the cold-formed steel beam and concrete using the concrete damaged plasticity model.


Author(s):  
Bruno Briseghella ◽  
Junping He ◽  
Junqing Xue ◽  
Zordan Tobia

<p>Short and medium span continuous steel-concrete composite (SCC) girder bridges are becoming more and more popular. The problems caused by the negative bending moment in the continuous SCC girders cannot be ignored. In order to investigate the performances of the continuous joints between adjacent SCC girders, consist of steel endplates and headed shear stud connected to concrete cross-beam, the finite element model was built by using ABAQUS software, of which the accuracy was verified by experimental results. The parametric analyses were carried out to investigate the influences of the strength and reinforcement ratio of the concrete slabs in SCC girders, and the diameters of the horizontal headed shear studs on the performances of the joints. The ultimate moment capacity of the joint increases with the increase in the strength and reinforcement ratio of concrete slab and the diameters of the horizontal headed shear studs.</p>


Sign in / Sign up

Export Citation Format

Share Document