On the role of vaccine dose and antigenic distance in the transmission dynamics of Highly Pathogenic Avian Influenza (HPAI) H5N1 virus and its selected mutants in vaccinated animals

2017 ◽  
Author(s):  
Ioannis Sitaras
2016 ◽  
Vol 13 (114) ◽  
pp. 20150976 ◽  
Author(s):  
Ioannis Sitaras ◽  
Xanthoula Rousou ◽  
Donata Kalthoff ◽  
Martin Beer ◽  
Ben Peeters ◽  
...  

Highly pathogenic avian influenza (HPAI) H5N1 epidemics in poultry cause huge economic losses as well as sporadic human morbidity and mortality. Vaccination in poultry has often been reported as being ineffective in preventing transmission and as a potential driving force in the selection of immune escape mutants. We conducted transmission experiments to evaluate the transmission dynamics of HPAI H5N1 strains in chickens vaccinated with high and low doses of immune escape mutants we have previously selected, and analysed the data using mathematical models. Remarkably, we demonstrate that the effect of antigenic distances between the vaccine and challenge strains used in this study is too small to influence the transmission dynamics of the strains used. This is because the effect of a sufficient vaccine dose on antibody levels against the challenge viruses is large enough to compensate for any decrease in antibody titres due to antigenic differences between vaccine and challenge strains. Our results show that at least under experimental conditions, vaccination will remain effective even after antigenic changes as may be caused by the initial selection in vaccinated birds.


2021 ◽  
Author(s):  
Periyasamy Vijayakumar ◽  
Ashwin Ashok Raut ◽  
Santhalembi Chingtham ◽  
Harshad V Murugkar ◽  
Diwakar D. Kulkarni ◽  
...  

Abstract Elucidation of molecular pathogenesis underlying virus-host interaction is important for the development of new diagnostic and therapeutic strategies against highly pathogenic avian influenza (HPAI) infection in chicken. However, chicken HPAI viral pathogenesis is not completely understood. To elucidate the intracellular signaling pathways and critical host proteins associated with influenza pathogenesis, we characterized the lung proteome of chicken infected with HPAI H5N1 virus (A/duck/India/02CA10/2011/Agartala). The chicken mass spectra data sets comprised1, 47, 451 MS scans and 19, 917 MS/MS scans. At local FDR 5% level, we identified total 3313 chicken proteins with presence of at least one unique peptide. At 12 hrs, 247 proteins are downregulated while 1754 proteins are downregulated at 48 hrs indicating that the host has succumbed to infection. There is expression of proteins of the predominant signaling pathways, such as TLR, RLR, NLR and JAK-STAT signaling. Activation of these pathways is associated with cytokine storm effect and thus may be the cause of severity of HPAI H5N1 infection in chicken. Further we identified proteins like MyD88, IKBKB, IRAK4, RELA, and MAVS involved in the critical signaling pathways and some other novel proteins (HNF4A, ELAVL1, FN1, COPS5, CUL1, BRCA1 and FYN) as main hub proteins that might play important roles in influenza pathogenesis in chicken. Taken together, we characterized the signaling pathways and the proteomic determinants responsible for disease pathogenesis in chicken infected with HPAI H5N1 virus.


2017 ◽  
Vol 83 (16) ◽  
Author(s):  
Yu Yamamoto ◽  
Kikuyasu Nakamura ◽  
Masaji Mase

ABSTRACT Eurasian lineage highly pathogenic avian influenza (HPAI) H5N1 virus has been a severe threat to the poultry industry since its emergence in 1996. The carcass or tissues derived from infected birds may present the risk of the virus spreading to humans, animals, and the surrounding environment. In this study, we investigated the survival of the virus in feather, muscle, and liver tissues collected from six chickens (Gallus gallus) experimentally infected with HPAI H5N1 virus. The tissues were stored at +4°C or +20°C, and viral isolation was performed at different times for 360 days. The maximum periods for viral survival were observed in samples stored at +4°C in all tissue types and were 240 days in feather tissues, 160 days in muscle, and 20 days in liver. The viral infectivity at +20°C was maintained for a maximum of 30 days in the feather tissues, 20 days in muscle, and 3 days in liver. The viral inactivation rates partly overlapped in the feather and muscle tissues at the two temperatures. The virus was inactivated rapidly in the liver. Our experimental results indicate that the tissue type and temperature can greatly influence the survival of HPAI H5N1 virus in the tissues of infected chickens. IMPORTANCE Highly pathogenic avian influenza virus of the H5N1 subtype can cause massive losses of poultry, and people need to handle a large number of chicken carcasses contaminated with the virus at outbreak sites. This study evaluated how long the virus can keep its infectivity in the three types of tissues derived from chickens infected with the virus. Our experimental results indicate that the virus can survive in tissues for a specific period of time depending on the tissue type and temperature. Our results are valuable for better understanding of viral ecology in the environment and for reducing the risk of the virus spreading via bird tissues contaminated with the virus.


2013 ◽  
Vol 142 (5) ◽  
pp. 940-949 ◽  
Author(s):  
O. A. ADEGBOYE ◽  
D. KOTZE

SUMMARYThis research is focused on the epidemiological analysis of the transmission of the highly pathogenic avian influenza (HPAI) H5N1 virus outbreak in Nigeria. The data included 145 outbreaks together with the locations of the infected farms and the date of confirmation of infection. In order to investigate the environmental conditions that favoured the transmission and spread of the virus, weather stations were realigned with the locations of the infected farms. The spatial Kolmogorov–Smirnov test for complete spatial randomness rejects the null hypothesis of constant intensity (P < 0·0001). Preliminary exploratory analysis showed an increase in the incidence of H5N1 virus at farms located at high altitude. Results from the Poisson log-linear conditional intensity function identified temperature (−0·9601) and wind speed (0·6239) as the ecological factors that influence the intensity of transmission of the H5N1 virus. The model also includes distance from the first outbreak (−0·9175) with an Akaike's Information Criterion of −103·87. Our analysis using a point process model showed that geographical heterogeneity, seasonal effects, temperature, wind as well as proximity to the first outbreak are very important components of spread and transmission of HPAI H5N1.


mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Chris Ka Pun Mok ◽  
Horace Hok Yeung Lee ◽  
Michael Chi Wai Chan ◽  
Sin Fun Sia ◽  
Maxime Lestra ◽  
...  

ABSTRACT A novel avian-origin influenza A/H7N9 virus infecting humans was first identified in March 2013 and, as of 30 May 2013, has caused 132 human infections leading to 33 deaths. Phylogenetic studies suggest that this virus is a reassortant, with the surface hemagglutinin (HA) and neuraminidase (NA) genes being derived from duck and wild-bird viruses, respectively, while the six “internal gene segments” were derived from poultry H9N2 viruses. Here we determine the pathogenicity of a human A/Shanghai/2/2013 (Sh2/H7N9) virus in healthy adult mice in comparison with that of A/chicken/Hong Kong/HH8/2010 (ck/H9N2) virus, highly pathogenic avian influenza (HPAI) A/Hong Kong/483/1997 (483/H5N1) virus, and a duck influenza A H7N9 virus of different genetic derivation, A/duck/Jiangxi/3286/2009 (dk/H7N9). Intranasal infection of mice with Sh2/H7N9 virus doses of 103, 104, and 105 PFU led to significant weight loss without fatality. This virus was more pathogenic than dk/H7N9 and ck/H9N2 virus, which has six internal gene segments that are genetically similar to Sh2/H7N9. Sh2/H7N9 replicated well in the nasal cavity and lung, but there was no evidence of virus dissemination beyond the respiratory tract. Mice infected with Sh2/H7N9 produced higher levels of proinflammatory cytokines in the lung and serum than did ck/H9N2 and dk/H7N9 but lower levels than 483/H5N1. Cytokine induction was positively correlated with virus load in the lung at early stages of infection. Our results suggest that Sh2/H7N9 virus is able to replicate and cause disease in mice without prior adaptation but is less pathogenic than 483/H5N1 virus. IMPORTANCE An H7N9 virus isolate causing fatal human disease was found to be more pathogenic for mice than other avian H9N2 or H7N9 viruses but less pathogenic than the highly pathogenic avian influenza virus (HPAI) H5N1. Similarly, the ability of Sh2/H7N9 to elicit proinflammatory cytokines in the lung and serum of mice was intermediate to ck/H9N2 and dk/H7N9 on the one hand and HPAI H5N1 on the other. These findings accord with the observed epidemiology in humans, in whom, as with seasonal influenza viruses, H7N9 viruses cause severe disease predominantly in older persons while HPAI H5N1 can cause severe respiratory disease and death in children and young adults.


2019 ◽  
Vol 25 (3) ◽  
pp. 551-554 ◽  
Author(s):  
Marie Souvestre ◽  
Claire Guinat ◽  
Eric Niqueux ◽  
Luc Robertet ◽  
Guillaume Croville ◽  
...  

2015 ◽  
Vol 143 (16) ◽  
pp. 3394-3404 ◽  
Author(s):  
A. D. STORMS ◽  
R. KUSRIASTUTI ◽  
S. MISRIYAH ◽  
C. Y. PRAPTININGSIH ◽  
M. AMALYA ◽  
...  

SUMMARYIndonesia has reported the most human infections with highly pathogenic avian influenza (HPAI) A(H5N1) virus worldwide. We implemented enhanced surveillance in four outpatient clinics and six hospitals for HPAI H5N1 and seasonal influenza viruses in East Jakarta district to assess the public health impact of influenza in Indonesia. Epidemiological and clinical data were collected from outpatients with influenza-like illness (ILI) and hospitalized patients with severe acute respiratory infection (SARI); respiratory specimens were obtained for influenza testing by real-time reverse transcription–polymerase chain reaction. During October 2011–September 2012, 1131/3278 specimens from ILI cases (34·5%) and 276/1787 specimens from SARI cases (15·4%) tested positive for seasonal influenza viruses. The prevalence of influenza virus infections was highest during December–May and the proportion testing positive was 76% for ILI and 36% for SARI during their respective weeks of peak activity. No HPAI H5N1 virus infections were identified, including hundreds of ILI and SARI patients with recent poultry exposures, whereas seasonal influenza was an important contributor to acute respiratory disease in East Jakarta. Overall, 668 (47%) of influenza viruses were influenza B, 384 (27%) were A(H1N1)pdm09, and 359 (25%) were H3. While additional data over multiple years are needed, our findings suggest that seasonal influenza prevention efforts, including influenza vaccination, should target the months preceding the rainy season.


2019 ◽  
Author(s):  
Periyasamy Vijayakumar ◽  
Ashwin Ashok Raut ◽  
Santhalembi Chingtham ◽  
Harshad V Murugkar ◽  
Diwakar D. Kulkarni ◽  
...  

AbstractElucidation of molecular pathogenesis underlying virus-host interaction is important for the development of new diagnostic and therapeutic strategies against highly pathogenic avian influenza (HPAI) infection in chicken. However, chicken HPAI viral pathogenesis is not completely understood. To elucidate the intracellular signaling pathways and critical host proteins associated with influenza pathogenesis, we characterized the lung proteome of chicken infected with HPAI H5N1 virus (A/duck/India/02CA10/2011/Agartala). The chicken mass spectra data sets comprised1, 47, 451 MS scans and 19, 917 MS/MS scans. At local FDR 5% level, we identified total 3313 chicken proteins with presence of at least one unique peptide. At 12 hrs, 247 proteins are downregulated while 1754 proteins are downregulated at 48 hrs indicating that the host has succumbed to infection. There is expression of proteins of the predominant signaling pathways, such as TLR, RLR, NLR and JAK-STAT signaling. Activation of these pathways is associated with cytokine storm effect and thus may be the cause of severity of HPAI H5N1 infection in chicken. Further we identified proteins like MyD88, IKBKB, IRAK4, RELA, and MAVS involved in the critical signaling pathways and some other novel proteins(HNF4A, ELAVL1, FN1, COPS5, CUL1, BRCA1 and FYN) as main hub proteins that might play important roles in influenza pathogenesis in chicken. Taken together, we characterized the signaling pathways and the proteomic determinants responsible for disease pathogenesis in chicken infected with HPAI H5N1 virus.


Sign in / Sign up

Export Citation Format

Share Document