Defending flowers against multiple attack: from phytohormones to plant ecology

2019 ◽  
Author(s):  
Lucille T.S. Chrétien
2014 ◽  
Vol 32 (2) ◽  
pp. 212-213
Author(s):  
E. K. Espeland
Keyword(s):  

2011 ◽  
pp. 93-97
Author(s):  
O. I. Sumina

From 31 January to 2 February 2011 in St. Petersburg state University was held All-Russian conference "Development of geobotany: history and modernity" devoted to the 80 anniversary of the Department of geobotany and plant ecology of St. Petersburg state University and anniversaries of its teachers.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
David Western ◽  
Victor N. Mose ◽  
David Maitumo ◽  
Caroline Mburu

Abstract Background Studies of the African savannas have used national parks to test ecological theories of natural ecosystems, including equilibrium, non-equilibrium, complex adaptive systems, and the role of top-down and bottom-up physical and biotic forces. Most such studies have excluded the impact of pastoralists in shaping grassland ecosystems and, over the last half century, the growing human impact on the world’s rangelands. The mounting human impact calls for selecting indicators and integrated monitoring methods able to track ecosystem changes and the role of natural and human agencies. Our study draws on five decades of monitoring the Amboseli landscape in southern Kenya to document the declining role of natural agencies in shaping plant ecology with rising human impact. Results We show that plant diversity and productivity have declined, biomass turnover has increased in response to a downsizing of mean plant size, and that ecological resilience has declined with the rising probability of extreme shortfalls in pasture production. The signature of rainfall and physical agencies in driving ecosystem properties has decreased sharply with growing human impact. We compare the Amboseli findings to the long-term studies of Kruger and Serengeti national parks to show that the human influence, whether by design or default, is increasingly shaping the ecology of savanna ecosystems. We look at the findings in the larger perspective of human impact on African grasslands and the world rangelands, in general, and discuss the implications for ecosystem theory and conservation policy and management. Conclusions The Amboseli study shows the value of using long-term integrated ecological monitoring to track the spatial and temporal changes in the species composition, structure, and function of rangeland ecosystems and the role of natural and human agencies in the process of change. The study echoes the widespread changes underway across African savannas and world’s rangelands, concluding that some level of ecosystem management is needed to prevent land degradation and the erosion of ecological function, services, and resilience. Despite the weak application of ecological theory to conservation management, a plant trait-based approach is shown to be useful in explaining the macroecological changes underway.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Jordi Ortuño ◽  
Sokratis Stergiadis ◽  
Anastasios Koidis ◽  
Jo Smith ◽  
Chris Humphrey ◽  
...  

Abstract Background The presence of condensed tannins (CT) in tree fodders entails a series of productive, health and ecological benefits for ruminant nutrition. Current wet analytical methods employed for full CT characterisation are time and resource-consuming, thus limiting its applicability for silvopastoral systems. The development of quick, safe and robust analytical techniques to monitor CT’s full profile is crucial to suitably understand CT variability and biological activity, which would help to develop efficient evidence-based decision-making to maximise CT-derived benefits. The present study investigates the suitability of Fourier-transformed mid-infrared spectroscopy (MIR: 4000–550 cm−1) combined with multivariate analysis to determine CT concentration and structure (mean degree of polymerization—mDP, procyanidins:prodelphidins ratio—PC:PD and cis:trans ratio) in oak, field maple and goat willow foliage, using HCl:Butanol:Acetone:Iron (HBAI) and thiolysis-HPLC as reference methods. Results The MIR spectra obtained were explored firstly using Principal Component Analysis, whereas multivariate calibration models were developed based on partial least-squares regression. MIR showed an excellent prediction capacity for the determination of PC:PD [coefficient of determination for prediction (R2P) = 0.96; ratio of prediction to deviation (RPD) = 5.26, range error ratio (RER) = 14.1] and cis:trans ratio (R2P = 0.95; RPD = 4.24; RER = 13.3); modest for CT quantification (HBAI: R2P = 0.92; RPD = 3.71; RER = 13.1; Thiolysis: R2P = 0.88; RPD = 2.80; RER = 11.5); and weak for mDP (R2P = 0.66; RPD = 1.86; RER = 7.16). Conclusions MIR combined with chemometrics allowed to characterize the full CT profile of tree foliage rapidly, which would help to assess better plant ecology variability and to improve the nutritional management of ruminant livestock.


2003 ◽  
Vol 13 (2) ◽  
pp. 101-111 ◽  
Author(s):  
Péter Csontos ◽  
Júlia Tamás

AbstractSince 1969, ten soil seed bank classification systems have been published. Among these systems, the number of recognized seed bank categories varies from three to twelve. Seed longevity is the main factor used for distinguishing categories, but dormancy and germination types are also important. Systems considering relatively few seed bank categories have been the most commonly proposed in contemporary plant ecology. In contrast, systems involving high numbers of categories have received limited interest because the detailed ecological knowledge of individual species required for their successful categorization is usually missing. A comprehensive table on the main features of seed bank classification systems is provided.


Ecology ◽  
1927 ◽  
Vol 8 (4) ◽  
pp. 490-491 ◽  
Author(s):  
William S. Cooper
Keyword(s):  

1950 ◽  
Vol 44 (3) ◽  
pp. 761
Author(s):  
H. I. Featherly ◽  
Frank C. Gates
Keyword(s):  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Mariem Ben-Said

Abstract Background Ecological processes such as seedling establishment, biotic interactions, and mortality can leave footprints on species spatial structure that can be detectable through spatial point-pattern analysis (SPPA). Being widely used in plant ecology, SPPA is increasingly carried out to describe biotic interactions and interpret pattern-process relationships. However, some aspects are still subjected to a non-negligible debate such as required sample size (in terms of the number of points and plot area), the link between the low number of points and frequently observed random (or independent) patterns, and relating patterns to processes. In this paper, an overview of SPPA is given based on rich and updated literature providing guidance for ecologists (especially beginners) on summary statistics, uni-/bi-/multivariate analysis, unmarked/marked analysis, types of marks, etc. Some ambiguities in SPPA are also discussed. Results SPPA has a long history in plant ecology and is based on a large set of summary statistics aiming to describe species spatial patterns. Several mechanisms known to be responsible for species spatial patterns are actually investigated in different biomes and for different species. Natural processes, plant environmental conditions, and human intervention are interrelated and are key drivers of plant spatial distribution. In spite of being not recommended, small sample sizes are more common in SPPA. In some areas, periodic forest inventories and permanent plots are scarce although they are key tools for spatial data availability and plant dynamic monitoring. Conclusion The spatial position of plants is an interesting source of information that helps to make hypotheses about processes responsible for plant spatial structures. Despite the continuous progress of SPPA, some ambiguities require further clarifications.


Sign in / Sign up

Export Citation Format

Share Document