A Mechanical Design of an Altitude-Azimuth Two Axis Solar Tracking System for Sakarya, Turkey

Author(s):  
C. A. Tırmıkçı ◽  
C. Yavuz
Author(s):  
Samuel Davies ◽  
Sivagunalan Sivanathan ◽  
Ewen Constant ◽  
Kary Thanapalan

AbstractThis paper describes the design of an advanced solar tracking system development that can be deployed for a range of applications. The work focused on the design and implementation of an advanced solar tracking system that follow the trajectory of the sun’s path to maximise the power capacity generated by the solar panel. The design concept focussed on reliability, cost effectiveness, and scalability. System performance is of course a key issue and is at the heart of influencing the hardware, software and mechanical design. The result ensured a better system performance achieved. Stability issues were also addressed, in relation to optimisation and reliability. The paper details the physical tracker device developed as a prototype, as well as the proposed advanced control system for optimising the tracking.


Author(s):  
Hernando González-Acevedo ◽  
Yecid Muñoz-Maldonado ◽  
Adalberto Ospino-Castro ◽  
Julian Serrano ◽  
Anthony Atencio ◽  
...  

This paper presents the mechanical design of a single axis solar tracking system, as well as the electronic design of a system that to record in real time the electric power delivered by the solar tracker and to evaluate its performance. The interface was developed in Labview and it compares the power supplied by the tracker with the power supplied by static solar panel of the same characteristics. The performance is initially simulated using Pv-Syst software, and later validated with the data obtained by the interface. As a result, the use of the solar tracker increases the power delivered by a minimum of 19%, and it can go as high as 47.84%, with an average in increase in power of 19.5% in the monthly energy production. This experimental result was compared with the simulation by Pv-Syst software and shows a difference of only 2.5%, thus validating the reliability of the simulation. This behavior pattern coincides with previous studies carried out for equatorial latitudes.


This project deals with the PV Panel arrangement and its moving technique, auto tracking elements and its design. Domestic and commercial sectors are using battery backup system to challenge the power cut. Power demand is drastically increasing unproportionally to the supply. Hence, tapping of electricity from sun is mandatory requirement. A set of PV modules are integrated to the battery backup system. The charge mode selector will assign priority to use solar energy for battery charging / usage. In this system, the sunny days are used to tap out the energy. The efficiency of the PV cells are small only but by using auto tracking system the maximum possible energy can be tapped. Worm gear configurations in which the gear can not drive the worm are said to be self-locking.In this tracking arrangement,the worm gear riveted with PV array tracks the solar radiation.


Author(s):  
Adven Masih ◽  
Murodbek Safaraliev ◽  
Karomatullo Mukhmudov ◽  
Ismoil Odinaev ◽  
Bukhtiyor Ghoziev ◽  
...  

2020 ◽  
Vol 15 (4) ◽  
pp. 613-619
Author(s):  
Li Kong ◽  
Yunpeng Zhang ◽  
Zhijian Lin ◽  
Zhongzhu Qiu ◽  
Chunying Li ◽  
...  

Abstract The present work aimed to select the optimum solar tracking mode for parabolic trough concentrating collectors using numerical simulation. The current work involved: (1) the calculation of daily solar radiation on the Earth’s surface, (2) the comparison of annual direct solar radiation received under different tracking modes and (3) the determination of optimum tilt angle for the north-south tilt tracking mode. It was found that the order of solar radiation received in Shanghai under the available tracking modes was: dual-axis tracking > north-south Earth’s axis tracking > north-south tilt tracking (β = 15°) > north-south tilt tracking (β = 45) > north-south horizontal tracking > east-west horizontal tracking. Single-axis solar tracking modes feature simple structures and low cost. This study also found that the solar radiation received under the north-south tilt tracking mode was higher than that of the north-south Earth’s axis tracking mode in 7 out of 12 months. Therefore, the north-south tilt tracking mode was studied separately to determine the corresponding optimum tilt angles in Haikou, Lhasa, Shanghai, Beijing and Hohhot, respectively, which were shown as follows: 18.81°, 27.29°, 28.67°, 36.21° and 37.97°.


Sign in / Sign up

Export Citation Format

Share Document