scholarly journals Stochastic Restricted Liu Type estimator for SUR model

Author(s):  
Tarek Mahmoud Omara

In this paper, we introduce new Stochastic Restricted Estimator for SUR model, defined by Stochastic  Restricted Liu Type  SUR estimator (SRLTSE) . The propose estimator has deal with multicollinearity in SUR model if there is a degree of uncertainty in the parameters restriction. Moreover, the superiority of (SRLTSE) estimator  was derived with respect to mean squared error matrix (MSEM) criteria. Finally, a simulation study was conducted. This simulation used standard mean squares error  (MSE) criterion to illustrate the advantage between Stochastic  Restricted SUR estimator (SRSE), Stochastic  Restricted Ridge SUR estimator (SRRSE), and Stochastic  Restricted Liu Type  SUR estimator (SRLTSE) at several factors. 

Author(s):  
Tarek Mahmoud Omara

In this paper, we introduce the new biased estimator to deal with the problem of multicollinearity. This estimator is considered a modification of Two-Parameter Ridge-Liu estimator based on ridge estimation. Furthermore, the superiority of the new estimator than Ridge, Liu and Two-Parameter Ridge-Liu estimator were discussed. We used the mean squared error matrix (MSEM) criterion to verify the superiority of the new estimate.  In addition to, we illustrated the performance of the new estimator at several factors through the simulation study.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Lorcán O. Conlon ◽  
Jun Suzuki ◽  
Ping Koy Lam ◽  
Syed M. Assad

AbstractFinding the optimal attainable precisions in quantum multiparameter metrology is a non-trivial problem. One approach to tackling this problem involves the computation of bounds which impose limits on how accurately we can estimate certain physical quantities. One such bound is the Holevo Cramér–Rao bound on the trace of the mean squared error matrix. The Holevo bound is an asymptotically achievable bound when one allows for any measurement strategy, including collective measurements on many copies of the probe. In this work, we introduce a tighter bound for estimating multiple parameters simultaneously when performing separable measurements on a finite number of copies of the probe. This makes it more relevant in terms of experimental accessibility. We show that this bound can be efficiently computed by casting it as a semidefinite programme. We illustrate our bound with several examples of collective measurements on finite copies of the probe. These results have implications for the necessary requirements to saturate the Holevo bound.


Econometrics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 40
Author(s):  
Erhard Reschenhofer ◽  
Manveer K. Mangat

For typical sample sizes occurring in economic and financial applications, the squared bias of estimators for the memory parameter is small relative to the variance. Smoothing is therefore a suitable way to improve the performance in terms of the mean squared error. However, in an analysis of financial high-frequency data, where the estimates are obtained separately for each day and then combined by averaging, the variance decreases with the sample size but the bias remains fixed. This paper proposes a method of smoothing that does not entail an increase in the bias. This method is based on the simultaneous examination of different partitions of the data. An extensive simulation study is carried out to compare it with conventional estimation methods. In this study, the new method outperforms its unsmoothed competitors with respect to the variance and its smoothed competitors with respect to the bias. Using the results of the simulation study for the proper interpretation of the empirical results obtained from a financial high-frequency dataset, we conclude that significant long-range dependencies are present only in the intraday volatility but not in the intraday returns. Finally, the robustness of these findings against daily and weekly periodic patterns is established.


Sign in / Sign up

Export Citation Format

Share Document