scholarly journals The impacts of heat generation/absorption and partial slip on boundary layer flow and heat transfer of a nanofluid comprising of self-impelled motile microorganisms passing a stretching sheet

2019 ◽  
Vol 6 (1) ◽  
pp. 10-20
Author(s):  
Mohsen Izadi ◽  
Seyed Mehryan ◽  
Ali Chamkha ◽  
Giulio Lorenzini
2013 ◽  
Vol 29 (3) ◽  
pp. 559-568 ◽  
Author(s):  
G. C. Shit ◽  
R. Haldar ◽  
A. Sinha

AbstractA non-linear analysis has been made to study the unsteady hydromagnetic boundary layer flow and heat transfer of a micropolar fluid over a stretching sheet embedded in a porous medium. The effects of thermal radiation in the boundary layer flow over a stretching sheet have also been investigated. The system of governing partial differential equations in the boundary layer have reduced to a system of non-linear ordinary differential equations using a suitable similarity transformation. The resulting non-linear coupled ordinary differential equations are solved numerically by using an implicit finite difference scheme. The numerical results concern with the axial velocity, micro-rotation component and temperature profiles as well as local skin-friction coefficient and the rate of heat transfer at the sheet. The study reveals that the unsteady parameter S has an increasing effect on the flow and heat transfer characteristics.


1970 ◽  
Vol 46 (4) ◽  
pp. 451-456 ◽  
Author(s):  
K Bhattacharyya ◽  
MS Uddin ◽  
GC Layek ◽  
W Ali Pk

In this paper, we obtained solutions of boundary layer flow and heat transfer for two classes of viscoelastic fluid over a stretching sheet with internal heat generation or absorption. In the analysis, we consider second-grade fluid and Walter's liquid B. The governing equations are transformed into self-similar ordinary differential equations by similarity transformations. The flow equation relating to momentum is solved analytically and then the heat equation using the Kummer's function. The analysis reveals that for the increase in magnitude of viscoelastic parameter both the velocity and temperature for a fixed point increase for second-grade fluid and both decrease for Walter's liquid B. Due to increase in Prandtl number and heat sink parameter, the thermal boundary layer thickness reduces, whereas increasing heat source parameter increases that thickness. Key words: Boundary layer flow; Heat transfer; Viscoelastic fluid; Stretching sheet; Heat generation or absorption DOI: http://dx.doi.org/10.3329/bjsir.v46i4.9590 BJSIR 2011; 46(4): 451-456


2008 ◽  
Author(s):  
Cornelia Revnic ◽  
Teodor Grosan ◽  
Ioan Pop ◽  
Theodore E. Simos ◽  
George Maroulis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document