scholarly journals Process Simulation and Environmental Assessment of the Production of Dimethyl Ether from Digestate

2020 ◽  
Vol 64 (2-4) ◽  
pp. 173-178
Author(s):  
Aristide Giuliano ◽  
Enrico Catizzone
Author(s):  
Aristide Giuliano ◽  
Enrico Catizzone ◽  
Cesare Freda

The production of dimethyl ether from renewables or waste is a promising strategy to push towards a sustainable energy transition of alternative eco-friendly diesel fuel. In this work, we simulate the synthesis of dimethyl ether from a syngas (a mixture of CO, CO2 and H2) produced from gasification of digestate. In particular, a thermodynamic analysis was performed to individuate the best process conditions and syngas conditioning processes to maximize yield to dimethyl etehr (DME). Process simulation was carried out by ChemCAD software, and it was particularly focused on the effect of process conditions of both water gas shift and CO2 absorption by Selexol® on the syngas composition, with a direct influence on DME productivity. The final best flowsheet and the best process conditions were evaluated in terms of CO2 equivalent emissions. Results show direct DME synthesis global yield was higher without the WGS section and with a carbon capture equal to 85%. The final environmental impact was found equal to −113 kgCO2/GJ, demonstrating that DME synthesis from digestate may be considered as a suitable strategy for carbon dioxide recycling.


2009 ◽  
Vol 27 (5) ◽  
pp. 599-605 ◽  
Author(s):  
Fudong Ju ◽  
Hanping Chen ◽  
Xuejun Ding ◽  
Haiping Yang ◽  
Xianhua Wang ◽  
...  

2013 ◽  
Vol 15 (2) ◽  
pp. 122-127 ◽  
Author(s):  
Ziyang Bai ◽  
Hongfang Ma ◽  
Haitao Zhang ◽  
Weiyong Ying ◽  
Dingye Fang

The production processes included catalytic dehydration of methanol in an adiabatic fixed-bed reactor and two columns product separations. In this study, the technological process for dimethyl ether (DME) synthesis is built on PRO/II platform based on the combined parameters of the reaction dynamic model for methanol dehydration reaction, the improved NRTL model of the liquid phase, the PR model of vapor phase. In order to validate the proposed model, the simulation results have been compared with the available data from a set of industrial production equipment with a production capacity of 200 000 tonnes per annum. A comparison between the calculated and measured results has proved that these results are satisfactory. The bed height and the volume of the catalytic bed are calculated aim at one million t/a DME yields and while taking account of high-purity DME production. After discussing the influence of feed stage location and reflux ratio for DME product purity, the suitable unit operation conditions are chosen. Accordingly, accurate process simulation results provide the basis and guidance for an improvement and development of the similar industrial device.


2016 ◽  
Vol 4 (4) ◽  
pp. 526-535 ◽  
Author(s):  
Ashak M. Parvez ◽  
Iqbal M. Mujtaba ◽  
Philip Hall ◽  
Edward H. Lester ◽  
Tao Wu

2021 ◽  
Vol 8 (5) ◽  
pp. 780-786
Author(s):  
Aristide Giuliano ◽  
Enrico Catizzone

The conversion of waste and residues towards high added value products has receiving a growing attention, as a reliable strategy to improve sustainability of emergent processes. Anaerobic digestion converts organic waste into biogas and digestate. While biogas may be used for energetic purpose, digestate has limited uses and with a low profitability. In this paper, dimethyl ether (DME) is adopted as target product which may be produced from digestate-derived syngas. Process simulation is carried out for both direct and indirect synthesis of DME and environmental aspects are assessed.


Sign in / Sign up

Export Citation Format

Share Document