scholarly journals Design of a stigmatic lens with minimal Fresnel losses

2021 ◽  
Vol 45 (3) ◽  
pp. 350-355
Author(s):  
L.L. Doskolovich ◽  
D.A. Bykov ◽  
G.I. Greisukh ◽  
Y.S. Strelkov

A method for designing double aspheric lenses enabling minimal Fresnel losses in the class of stigmatic lenses is considered. Minimization of the Fresnel losses is provided by ensuring equal ray-deviation angles on both aspheric surfaces of the lens. The design of the lens is reduced to the integration of an explicit ordinary differential equation. Simple analytical approximations for the lens profiles are also presented.

Author(s):  
Razvan Gabriel Iagar ◽  
Philippe Laurençot

A classification of the behaviour of the solutions f(·, a) to the ordinary differential equation (|f′|p-2f′)′ + f - |f′|p-1 = 0 in (0,∞) with initial condition f(0, a) = a and f′(0, a) = 0 is provided, according to the value of the parameter a > 0 when the exponent p takes values in (1, 2). There is a threshold value a* that separates different behaviours of f(·, a): if a > a*, then f(·, a) vanishes at least once in (0,∞) and takes negative values, while f(·, a) is positive in (0,∞) and decays algebraically to zero as r→∞ if a ∊ (0, a*). At the threshold value, f(·, a*) is also positive in (0,∞) but decays exponentially fast to zero as r→∞. The proof of these results relies on a transformation to a first-order ordinary differential equation and a monotonicity property with respect to a > 0. This classification is one step in the description of the dynamics near the extinction time of a diffusive Hamilton–Jacobi equation with critical gradient absorption and fast diffusion.


Sign in / Sign up

Export Citation Format

Share Document