scholarly journals ON ONE APPROXIMATION ESTIMATE

2017 ◽  
Vol 17 (5) ◽  
pp. 53-59
Author(s):  
M.B. Medegey

Linear operators satisfying some conditions are considered. The given operators are a particular kind of class operators (by P.P. Korovkin). For the estimate derivation the interpolation method is used, described in the works by Yu.G. Abakumov and O.N. Shestakova

2013 ◽  
Vol 444-445 ◽  
pp. 628-632
Author(s):  
Ru Chao Shi ◽  
Sheng Li Xu ◽  
Ya Jun Zhang

This paper presents a 3D numerical simulation of water droplets merging under a given shock wave. We couple interpolation method to RGFM (Real Ghost Fluid Method) to improve the numerical accuracy of RGFM. The flow states of air-water interface are calculated by ARPS (approximate Riemann problem solver). Flow field is solved by Euler equation with fifth-order WENO spatial discretization and fourth-order R-K (Runge-Kutta) time discretization. We also employ fifth-order HJ-WENO to discretize level set equation to keep track of gas-liquid interface. Numerical results demonstrate that droplets shape has little change before merging and the merged droplet gradually becomes umbrella-shaped under the given shock wave. We verify that combination of RGFM with interpolation method has the property of reducing numerical error by comparing to the results without employment of interpolation method.


2012 ◽  
Vol 12 (01) ◽  
pp. 1250006
Author(s):  
SHUHUA LAI ◽  
FUHUA (FRANK) CHENG

A new approach for constructing a smooth subdivision surface to interpolate the vertices of an arbitrary mesh is presented. The construction process does require setting up neither any linear systems, nor any matrix computation, but is simply done by iteratively moving vertices of the given mesh locally until control mesh of the required interpolating surface is reached. The new interpolation method has the simplicity of a local method in effectively dealing with meshes of a large number of vertices. It also has the capability of a global method in faithfully resembling the shape of a given mesh. Furthermore, the new method is fast and does not require a fairing step in the construction process because the iterative process converges to a unique solution at an exponential rate. Another important result of this work is, with the new iterative process, each mesh (surface) can be decomposed into a sum of simpler meshes (surfaces) which carry high-and low-frequency information of the given model. This mesh decomposition scheme provides us with new approaches to some classic applications in computer graphics such as texture mapping, denoising/smoothing/sharpening, and morphing. These new approaches are demonstrated in this paper and test results are included.


2011 ◽  
Vol 53 (3) ◽  
pp. 443-449 ◽  
Author(s):  
ANTONÍN SLAVÍK

AbstractThis paper is inspired by a counter example of J. Kurzweil published in [5], whose intention was to demonstrate that a certain property of linear operators on finite-dimensional spaces need not be preserved in infinite dimension. We obtain a stronger result, which says that no infinite-dimensional Banach space can have the given property. Along the way, we will also derive an interesting proposition related to Dvoretzky's theorem.


2012 ◽  
Vol 57 (4) ◽  
pp. 921-932 ◽  
Author(s):  
Masoud Soleymani Shishvan ◽  
Javad Sattarvand

Abstract In this paper a new method of modeling variable slope angles has been presented based on the spline interpolation method. Slope angle modeling and defining precedency of the blocks are the vital parts of almost any open pit optimization algorithm. Traditionally heuristic patterns such as 1:5 or 1:9 have been used to generate slope angles. Cone template based models were later employed in developing variable slope angles. They normally use a linear interpolation process for determination of slope angles between the given directions which leads to sharp and non-realistic pits. The other elliptical alternatives suffer from having limitations in defining slope angles in non-geographical directions. The method is capable to consider any number of slope angles in any desired direction as well as creating quite accurate and realistic pit shapes. Three major types of the spline interpolation including cubic, quadratic and cardinal are tested, however, the cubic form is preferred due to more realistic outcomes. Main steps of the method are described through a numerical case study.


1989 ◽  
Vol 112 (3-4) ◽  
pp. 263-269 ◽  
Author(s):  
O. J. Beucher

SynopsisWe show that the property of linear operators to be in the surjective hull (injective hull) of the ideal of strictly singular (strictly cosingular) operators between Banach spaces is an interpolation property with respect to the real interpolation method with parameters 0 < ủ < 1 and < p < ℞.


2020 ◽  
Vol 69 (1) ◽  
pp. 128-133
Author(s):  
А.А. Kalybay ◽  
◽  
А.М. Temirkhanova ◽  

Problems of solving different linear difference equation is given to study the properties of the matrix operators in various functional spaces. One of the important problems of functional analysis is to establish criteria of boundedness of the linear operators in functional spaces. Question of the boundedness of matrix operators in sequence spaces is a classic problem of functional analysis and there are many unsolved problems in it. For example, in the general case it is impossible to establish the boundedness of the matrix operator in the spaces of sequences by the given matrix. Therefore, various classes of matrix operators are considered for which the criteria of their boundedness are known. Due to the variety of encountered problems in practice, it is necessary to have various alternative criteria for the boundedness of matrix operators. In this paper, we establish a new alternative criterion for the boundedness of one class of matrix operators.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1936
Author(s):  
Yujin Ha ◽  
Jung-Ho Park ◽  
Seung-Hyun Yoon

Curves on a polygonal mesh are quite useful for geometric modeling and processing such as mesh-cutting and segmentation. In this paper, an effective method for constructing C1 piecewise cubic curves on a triangular mesh M while interpolating the given mesh points is presented. The conventional Hermite interpolation method is extended such that the generated curve lies on M. For this, a geodesic vector is defined as a straightest geodesic with symmetric property on edge intersections and mesh vertices, and the related geodesic operations between points and vectors on M are defined. By combining cubic Hermite interpolation and newly devised geodesic operations, a geodesic Hermite spline curve is constructed on a triangular mesh. The method follows the basic steps of the conventional Hermite interpolation process, except that the operations between the points and vectors are replaced with the geodesic. The effectiveness of the method is demonstrated by designing several sophisticated curves on triangular meshes and applying them to various applications, such as mesh-cutting, segmentation, and simulation.


2021 ◽  
Author(s):  
Xin Jiang ◽  
Yifei Hu ◽  
Guanying Huo ◽  
Cheng Su ◽  
Bolun Wang ◽  
...  

Abstract In computer numerical control systems, linear segments, which are generated by computer-aided manufacturing software, are the most widely used toolpath format. Since the linear toolpath is discontinuous at the junction of two adjacent segments, the fluctuations on velocity, acceleration and jerk are inevitable. Local corner smoothing is widely used to address this problem. However, most existing methods use symmetrical splines to smooth the corners. When any one of the linear segments at the corner is short, to avoid overlap, the inserted spline will be micro, thereby increasing the curvature extreme of the spline and reducing the feedrate along it. In this article, the corners are smoothed by a 𝐶4 continuous asymmetric Pythagorean-hodograph (PH) spline. The curvature extreme of the proposed spline is investigated first, and 𝐾=2.5 is determined as the threshold to constarin the asymmetry of the spline. Then a two-step strategy is used to generate a blended toolpath composed of asymmetric PH splines and linear segments. In the first step, the PH splines at the corners are generated under the premise that the transition lengths do not exceed half of the length of the linear segments. In the second step, the splines at the corners are re-planned to reduce the curvature extremes, if the transition error does not reach the given threshold and there are extra linear trajectories on both sides of the spline trajectory. Finally, the bilinear interpolation method is applied to determine the critical points of the smoothed toolpath, and a jerk-continuous feedrate scheduling scheme is presented to interpolate the smoothed toolpath. Simulations show that, under the condition of not affecting the machining quality, the proposed method can improve the machining efficiency by 7.84% to 23.98% compared to 𝐺3 and 𝐺4 methods.


2017 ◽  
Vol 12 (S333) ◽  
pp. 168-169
Author(s):  
S. Pinter ◽  
Z. Bagoly ◽  
L. G. Balázs ◽  
I. Horvath ◽  
I. I. Racz ◽  
...  

AbstractInvestigating the distant extragalactic Universe requires a subtraction of the Galactic foreground. One of the major difficulties deriving the fine structure of the galactic foreground is the embedded foreground and background point sources appearing in the given fields. It is especially so in the infrared. We report our study subtracting point sources from Herschel images with Kriging, an interpolation method where the interpolated values are modelled by a Gaussian process governed by prior covariances. Using the Kriging method on Herschel multi-wavelength observations the structure of the Galactic foreground can be studied with much higher resolution than previously, leading to a better foreground subtraction at the end.


Sign in / Sign up

Export Citation Format

Share Document