scholarly journals Laser photomodification of insulin solution

Author(s):  
Anna Neupokoeva ◽  
Evgenia Kuzina ◽  
Nikita Moskalev ◽  
Anna Nikonova ◽  
Sergey Nebogin
Keyword(s):  
2021 ◽  
pp. 193229682110238
Author(s):  
Marc B. Taraban ◽  
Yilin Wang ◽  
Katharine T. Briggs ◽  
Yihua Bruce Yu

Background: There is a clear need to transition from batch-level to vial/syringe/pen-level quality control of biologic drugs, such as insulin. This could be achieved only by noninvasive and quantitative inspection technologies that maintain the integrity of the drug product. Methods: Four insulin products for patient self-injection presented as prefilled pens have been noninvasively and quantitatively inspected using the water proton NMR technology. The inspection output is the water proton relaxation rate R2(1H2O), a continuous numerical variable rather than binary pass/fail. Results: Ten pens of each product were inspected. R2(1H2O) displays insignificant variation among the 10 pens of each product, suggesting good insulin content uniformity in the inspected pens. It is also shown that transferring the insulin solution out of and then back into the insulin pen caused significant change in R2(1H2O), presumably due to exposure to O2 in air. Conclusions: Water proton NMR can noninvasively and quantitatively inspect insulin pens. wNMR can confirm product content uniformity, but not absolute content. Its sensitivity to sample transferring provides a way to detect drug product tampering. This opens the possibility of inspecting every pen/vial/syringe by manufacturers and end-users.


1965 ◽  
Vol 209 (2) ◽  
pp. 371-375 ◽  
Author(s):  
Edmundo Calva ◽  
Adela Mujica ◽  
Abdo Bisteni ◽  
Demetrio Sodi-Pallares

Myocardial infarction was produced in dogs by ligature of the anterior descending coronary artery. Sarcosomes were isolated from normal and infarcted tissue. Oxygen consumption was followed polarographically and adenosine triphosphate was measured as glucose 6-phosphate. One group of animals received a continuous infusion of glucose for 12 hr; another group received "polarizing solution" (glucose-KCl-insulin). Sarcosomes from the first had a low oxygen consumption, no respiratory control, and no oxidative phosphorylation. In contrast, the administration of glucose-KCl-insulin solution maintained practically within normal limits these functional aspects of the sarcosomes. The reversal of electrocardiographic abnormalities by the administration of the polarizing solution coincided with improvement of such biochemical functions. Anesthesia and surgical handling did not appear to modify the behavior of the sarcosomes.


2010 ◽  
Vol 2010 (1) ◽  
pp. pdb.rec12113-pdb.rec12113
Keyword(s):  

RADIOISOTOPES ◽  
1974 ◽  
Vol 23 (6) ◽  
pp. 342-346 ◽  
Author(s):  
Goro URAKUBO ◽  
Kunisuke NAGAMATSU ◽  
Hideharu IKEBUCHI
Keyword(s):  

2020 ◽  
Author(s):  
Tao Wang ◽  
Dongqin Quan

Abstract Background In this study, we aimed to design a novel oral insulin delivery system, named “oil-soluble” reversed lipid nanoparticles (ORLN), in which a hydrophilic insulin molecule is encapsulated by a phospholipid (PC) shell and dissolved in oil to prevent the enzymatic degradation of insulin. ORLN was characterized by transmission electron microscopy and dynamic light scattering. Results In vitro enzymatic stability studies showed higher concentrations of insulin in cells incubated with ORLN-encapsulated insulin than in those incubated with free insulin solution in artificial intestinal fluid (pH 6.5). The protective effect of ORLN was attributed to its special release behavior and the formulation of the PC shell and oil barrier. Furthermore, an in vivo oral efficacy study confirmed that blood glucose levels were markedly decreased after ORLN administration in both healthy and diabetic mice. In vivo pharmacokinetic results showed that the bioavailability of ORLN-conjugated insulin was approximately 28.7% relative to that of the group subcutaneously administered with an aqueous solution of insulin, indicating enhanced oral absorption. Conclusions In summary, the ORLN system developed here shows promise as a nanocarrier for improving the oral absorption of insulin.


2020 ◽  
Vol 10 (8) ◽  
pp. 2649 ◽  
Author(s):  
Momoh A. Mumuni ◽  
Ugwu E. Calister ◽  
Nafiu Aminu ◽  
Kenechukwu C. Franklin ◽  
Adedokun Musiliu Oluseun ◽  
...  

In this study, different ratios of mucin-grafted polyethylene-glycol-based microparticles were prepared and evaluated both in vitro and in vivo as carriers for the oral delivery of insulin. Characterization measurements showed that the insulin-loaded microparticles display irregular porosity and shape. The encapsulation efficiency and loading capacity of insulin were >82% and 18%, respectively. The release of insulin varied between 68% and 92% depending on the microparticle formulation. In particular, orally administered insulin-loaded microparticles resulted in a significant fall of blood glucose levels, as compared to insulin solution. Subcutaneous administration showed a faster, albeit not sustained, glucose fall within a short time as compared to the polymeric microparticle-based formulations. These results indicate the possible oral delivery of insulin using this combination of polymers.


1966 ◽  
Vol 211 (1) ◽  
pp. 71-76 ◽  
Author(s):  
E Calva ◽  
A Mujica ◽  
R Nunez ◽  
K Aoki ◽  
A Bisteni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document