scholarly journals Order-disorder structural transitions in synthetic filaments of fast and slow skeletal muscle myosins under relaxing and activating conditions.

2000 ◽  
Vol 47 (4) ◽  
pp. 1007-1017 ◽  
Author(s):  
Z A Podlubnaya ◽  
S L Malyshev ◽  
K Nieznański ◽  
D Stepkowski

In the previous study (Podlubnaya et al., 1999, J. Struc. Biol. 127, 1-15) Ca2+-induced reversible structural transitions in synthetic filaments of pure fast skeletal and cardiac muscle myosins were observed under rigor conditions (-Ca2+/+Ca2+). In the present work these studies have been extended to new more order-producing conditions (presence of ATP in the absence of Ca2+) aimed at arresting the relaxed structure in synthetic filaments of both fast and slow skeletal muscle myosin. Filaments were formed from column-purified myosins (rabbit fast skeletal muscle and rabbit slow skeletal semimebranosusproprius muscle). In the presence of 0.1 mM free Ca2+, 3 mM Mg2+ and 2 mM ATP (activating conditions) these filaments had a spread structure with a random arrangement of myosin heads and subfragments 2 protruding from the filament backbone. Such a structure is indistinguishable from the filament structures observed previously for fast skeletal, cardiac (see reference cited above) and smooth (Podlubnaya et al., 1999, J. Muscle Res. Cell Motil. 20, 547-554) muscle myosins in the presence of 0.1 mM free Ca2+. In the absence of Ca2+ and in the presence of ATP (relaxing conditions) the filaments of both studied myosins revealed a compact ordered structure. The fast skeletal muscle myosin filaments exhibited an axial periodicity of about 14.5 nm and which was much more pronounced than under rigor conditions in the absence of Ca2+ (see the first reference cited). The slow skeletal muscle myosin filaments differ slightly in their appearance from those of fast muscle as they exhibit mainly an axial repeat of about 43 nm while the 14.5 nm repeat is visible only in some regions. This may be a result of a slightly different structural properties of slow skeletal muscle myosin. We conclude that, like other filaments of vertebrate myosins, slow skeletal muscle myosin filaments also undergo the Ca2+-induced structural order-disorder transitions. It is very likely that all vertebrate muscle myosins possess such a property.

1975 ◽  
Vol 67 (1) ◽  
pp. 93-104 ◽  
Author(s):  
T D Pollard

Electron micrographs of negatively stained synthetic myosin filaments reveal that surface projections, believed to be the heads of the constituent myosin molecules, can exist in two configurations. Some filaments have the projections disposed close to the filament backbone. Other filaments have all of their projections widely spread, tethered to the backbone by slender threads. Filaments formed from the myosins of skeletal muscle, smooth muscle, and platelets each have distinctive features, particularly their lengths. Soluble mixtures of skeletal muscle myosin with either smooth muscle myosin or platelet myosin were dialyzed against 0.1 M KC1 at pH 7 to determine whether the simultaneous presence of two types of myosin would influence the properties of the filaments formed. In every case, a single population of filaments formed from the mixtures. The resulting filaments are thought to be copolymers of the two types of myosin, for several reasons: (a) their length-frequency distribution is unimodal and differs from that predicted for a simple mixture of two types of myosin filaments; (b) their mean length is intermediate between the mean lengths of the filaments formed separately from the two myosins in the mixture; (c) each of the filaments has structural features characteristic of both of the myosins in the mixture; and (d) their size and shape are determined by the proportion of the two myosins in the mixture.


1988 ◽  
Vol 78 (1) ◽  
pp. 65-70 ◽  
Author(s):  
Odile Cohen-Haguenauer ◽  
Paul J. R. Barton ◽  
Nguyen Van Cong ◽  
Stéphane Serero ◽  
Marie-Sylvie Gross ◽  
...  

1992 ◽  
Vol 72 (2) ◽  
pp. 656-663 ◽  
Author(s):  
J. Mair ◽  
A. Koller ◽  
E. Artner-Dworzak ◽  
C. Haid ◽  
K. Wicke ◽  
...  

The effects of a single series of high-force eccentric contractions involving the quadriceps muscle group (single leg) on plasma concentrations of muscle proteins were examined as a function of time, in the context of measurements of torque production and magnetic resonance imaging (MRI) of the involved muscle groups. Plasma concentrations of slow-twitch skeletal (cardiac beta-type) myosin heavy chain (MHC) fragments, myoglobin, creatine kinase (CK), and cardiac troponin T were measured in blood samples of six healthy male volunteers before and 2 h after 70 eccentric contractions of the quadriceps femoris muscle. Screenings were conducted 1, 2, 3, 6, 9, and 13 days later. To visualize muscle injury, MRI of the loaded and unloaded thighs was performed 3, 6, and 9 days after the eccentric exercise bout. Force generation of the knee extensors was monitored on a dynamometer (Cybex II+) parallel to blood sampling. Exercise resulted in a biphasic myoglobin release profile, delayed CK and MHC peaks. Increased MHC fragment concentrations of slow skeletal muscle myosin occurred in late samples of all participants, which indicated a degradation of slow skeletal muscle myosin. Because cardiac troponin T was within the normal range in all samples, which excluded a protein release from the heart (cardiac beta-type MHC), this finding provides evidence for an injury of slow-twitch skeletal muscle fibers in response to eccentric contractions. Muscle action revealed delayed reversible increases in MRI signal intensities on T2-weighted images of the loaded vastus intermedius and deep parts of the vastus lateralis. We attributed MRI signal changes due to edema in part to slow skeletal muscle fiber injury.(ABSTRACT TRUNCATED AT 250 WORDS)


2012 ◽  
Vol 33 (6) ◽  
pp. 403-417 ◽  
Author(s):  
Bernhard Brenner ◽  
Nils Hahn ◽  
Eva Hanke ◽  
Faramarz Matinmehr ◽  
Tim Scholz ◽  
...  

2002 ◽  
Vol 68 (sup2) ◽  
pp. 1499-1502 ◽  
Author(s):  
SHOICHIRO ISHIZAKI ◽  
YASUYUKI MASUDA ◽  
MUNEHIKO TANAKA ◽  
SHUGO WATABE

Sign in / Sign up

Export Citation Format

Share Document