Persistence of Natural and Genetically Engineered Insecticides Based on Bacillus thuringiensis2

1994 ◽  
Vol 29 (3) ◽  
pp. 347-356 ◽  
Author(s):  
Firmin F. R. Nyouki ◽  
James R. Fuxa

The effects of environmental factors on the persistence of formulations of Bacillus thuringiensis Berliner were investigated in a greenhouse study. The persistence of Dipel™, a conventional formulation of B. thuringiensis, was compared with that of MVP™, a commercial formulation consisting of Pseudomonas fluorescens Migula genetically engineered to express a δ-endotoxin gene of B. thuringiensis subsp. kurstaki. Sprayed foliage bioassayed with third instars of Pseudoplusia includens (Walker) indicated that overall persistence of Dipel™ was significantly better (P < 0.05) than that of MVP™, though the 2.5% difference probably was not meaningful from a practical standpoint. The two formulations had significantly (P < 0.05) better persistence on cotton than on soybean or tomato, though there was still > 25% bioassay mortality on all three plant species after 14 d. Sunlight and a combination of precipitation and ultraviolet light were most detrimental to the B. thuringiensis formulations, followed by precipitation only and ultraviolet light only. The formulations were most stable in the dark with no precipitation.

2017 ◽  
Vol 28 (1-2) ◽  
pp. 28-35 ◽  
Author(s):  
B. A. Baranovski

Nowadays, bioecological characteristics of species are the basis for flora and vegetation studying on the different levels. Bioecological characteristics of species is required in process of flora studying on the different levels such as biotopes or phytocenoses, floras of particular areas (floras of ecologically homogeneous habitats), and floras of certain territories. Ramensky scale is the one of first detailed ecological scales on plant species ordination in relation to various environmental factors; it developed in 1938 (Ramensky, 1971). A little later (1941), Pogrebnyak’s scale of forest stands was proposed. Ellenberg’s system developed in 1950 (Ellenberg, 1979) and Tsyganov’s system (Tsyganov, 1975) are best known as the systems of ecological scales on vascular plant species; these systems represent of habitat detection by ecotopic ecomorphs of plant species (phytoindication). Basically, the system proposed by Alexander Lyutsianovich Belgard was the one of first system of plant species that identiified ectomorphs in relation to environmental factors. As early as 1950, Belgard developed the tabulated system of ecomorphs using the Latin ecomorphs abbreviation; he also used the terminology proposed in the late 19th century by Dekandol (1956) and Warming (1903), as well as terminology of other authors. The article analyzes the features of Belgard’s system of ecomorphs on vascular plants. It has certain significance and advantages over other systems of ecomorphs. The use of abbreviated Latin names of ecomorphs in tabular form enables the use shortened form of ones. In the working scheme of Belgard’s system of ecomorphs relation of species to environmental factors are represented in the abbreviated Latin alphabetic version (Belgard, 1950). Combined into table, the ecomorphic analysis of plant species within association (ecological certification of species), biotope or area site (water area) gives an explicit pattern on ecological structure of flora within surveyed community, biotope or landscape, and on environmental conditions. Development and application by Belgrard the cenomorphs as «species’ adaptation to phytocenosis as a whole» were completely new in the development of systems of ecomorphs and, in this connection, different coenomorphs were distinguished. Like any concept, the system of ecomorphs by Belgard has the possibility and necessity to be developed and added. Long-time researches and analysis of literature sources allow to propose a new coenomorph in the context of Belgard’s system of ecomorphs development: silvomargoant (species of forest margin, from the Latin words margo – edge, boundary (Dvoretsky, 1976), margo – margin, ad margins silvarum – along the deciduous forest margins). As an example of ecomorphic characterization of species according to the system of ecomorphs by Belgard (when the abbreviated Latin ecomorph names are used in tabular form and the proposed cenomorph is used), it was given the part of the table on vascular plants ecomorphs in the National Nature Park «Orelsky» (Baranovsky et al). The Belgard’s system of ecomorphs is particularly convenient and can be successfully applied to data processing in the ecological analysis of the flora on wide areas with significant species richness, and the proposed ecomorph will be another necessary element in the Belgard’s system of ecomorphs. 


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 517a-517
Author(s):  
Eric L. Zeldin ◽  
Rodney A. Serres ◽  
Brent H. McCown

`Stevens' cranberry was genetically engineered to confer tolerance to the broad spectrum herbicide glufosinate. Initially, herbicide tolerance was verified by spraying greenhouse plants with the commercial formulation Liberty. Although one transformant showed significant tolerance, the tolerance level was below that required to kill goldenrod, a common weed of cranberry beds. This transformant was propagated and the plants established outdoors in a coldframe, yielding a growth form more typical of field-grown plants than that of greenhouse-grown plants. These plants, as well as untransformed cranberry and goldenrod plants, were sprayed with various levels of the herbicide. The transformed plants were not killed at glufosinate concentrations up to 1000 ppm, although delayed growth did occur. Some runner tip injury was observed at 500 ppm as well as widespread shoot tip death at higher levels. The above-ground parts of goldenrod plants were killed at 400 ppm with significant injury at 200 ppm. Untransformed cranberry plants were killed at 300 ppm and had extensive tip death even at 100 ppm. Transformed cranberry plants with confirmed “field” tolerance were re-established in the greenhouse and new vegetative growth was forced. When these plants were sprayed with glufosinate, significant shoot tip injury was observed at levels as low as 100 ppm. The degree of herbicide tolerance of transformed cranberry appears to be modulated by the growth environment, which may affect the expression of the inserted genes or the physiological sensitivity of the impacted tissues.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Minwoo Oh ◽  
Yoonjeong Heo ◽  
Eun Ju Lee ◽  
Hyohyemi Lee

Abstract Background As trade increases, the influx of various alien species and their spread to new regions are prevalent, making them a general problem globally. Anthropogenic activities and climate change have led to alien species becoming distributed beyond their native range. As a result, alien species can be easily found anywhere, with the density of individuals varying across locations. The prevalent distribution of alien species adversely affects invaded ecosystems; thus, strategic management plans must be established to control them effectively. To this end, this study evaluated hotspots and cold-spots in the degree of distribution of invasive alien plant species, and major environmental factors related to hot spots were identified. We analyzed 10,287 distribution points of 126 species of alien plant species collected through a national survey of alien species using the hierarchical model of species communities (HMSC) framework. Results The explanatory and fourfold cross-validation predictive power of the model were 0.91 and 0.75 as area under the curve (AUC) values, respectively. Hotspots of invasive plants were found in the Seoul metropolitan area, Daegu metropolitan city, Chungcheongbuk-do Province, southwest shore, and Jeju Island. Hotspots were generally found where the highest maximum summer temperature, winter precipitation, and road density were observed. In contrast, seasonality in temperature, annual temperature range, precipitation during summer, and distance to rivers and the sea were negatively correlated to hotspots. The model showed that functional traits accounted for 55% of the variance explained by environmental factors. Species with a higher specific leaf area were found where temperature seasonality was low. Taller species were associated with a larger annual temperature range. Heavier seed mass was associated with a maximum summer temperature > 29 °C. Conclusions This study showed that hotspots contained 2.1 times more alien plants on average than cold-spots. Hotspots of invasive plants tended to appear under less stressful climate conditions, such as low fluctuations in temperature and precipitation. In addition, disturbance by anthropogenic factors and water flow positively affected hotspots. These results were consistent with previous reports on the ruderal and competitive strategies of invasive plants, not the stress-tolerant strategy. Our results supported that the functional traits of alien plants are closely related to the ecological strategies of plants by shaping the response of species to various environmental filters. Therefore, to control alien plants effectively, the occurrence of disturbed sites where alien plants can grow in large quantities should be minimized, and the waterfront of rivers must be managed.


2002 ◽  
Vol 68 (8) ◽  
pp. 3790-3794 ◽  
Author(s):  
Bruce E. Tabashnik ◽  
Timothy J. Dennehy ◽  
Maria A. Sims ◽  
Karen Larkin ◽  
Graham P. Head ◽  
...  

ABSTRACT Crops genetically engineered to produce Bacillus thuringiensis toxins for insect control can reduce use of conventional insecticides, but insect resistance could limit the success of this technology. The first generation of transgenic cotton with B. thuringiensis produces a single toxin, Cry1Ac, that is highly effective against susceptible larvae of pink bollworm (Pectinophora gossypiella), a major cotton pest. To counter potential problems with resistance, second-generation transgenic cotton that produces B. thuringiensis toxin Cry2Ab alone or in combination with Cry1Ac has been developed. In greenhouse bioassays, a pink bollworm strain selected in the laboratory for resistance to Cry1Ac survived equally well on transgenic cotton with Cry1Ac and on cotton without Cry1Ac. In contrast, Cry1Ac-resistant pink bollworm had little or no survival on second-generation transgenic cotton with Cry2Ab alone or with Cry1Ac plus Cry2Ab. Artificial diet bioassays showed that resistance to Cry1Ac did not confer strong cross-resistance to Cry2Aa. Strains with >90% larval survival on diet with 10 μg of Cry1Ac per ml showed 0% survival on diet with 3.2 or 10 μg of Cry2Aa per ml. However, the average survival of larvae fed a diet with 1 μg of Cry2Aa per ml was higher for Cry1Ac-resistant strains (2 to 10%) than for susceptible strains (0%). If plants with Cry1Ac plus Cry2Ab are deployed while genes that confer resistance to each of these toxins are rare, and if the inheritance of resistance to both toxins is recessive, the efficacy of transgenic cotton might be greatly extended.


1986 ◽  
Vol 8 (1) ◽  
pp. 18 ◽  
Author(s):  
HG Gardiner

The dynamics of populations of six plant species and their responses to environmental factors were examined at Yeelirrie station in the Mulga Zone rangelands of Western Australia. Populations of plants were sampled using sequential maps drawn from low level aerial photographs of areas from which livestock had been removed and which were fenced either to exclude or permit grazing by kangaroos (Macropus rufus Desmarest and Macropus robustus Gould). All six plant species were favoured by the combination of wet years (1973-76) and the removal of livestock from these arid rangelands. Increases ranged from about 20 plants/ha/yr (Eremophila leucophylla, Benth.) to more than 700 plants/ha/yr (Eremophila spectabilis, C.A. Gardn.) during this period. Drought (1977-1979) resulted in significant declines that ranged from about 10 plants/ha/yr (Eremophila leucophylla) to nearly 600 plants/ha/yr (Eremophila spectabilis) while three species (Eremophila leucophylla, Maireana glomerifolia, (F. Muell. et Tate) P.G. Wilson and Ptilotus obovatus, Gaud.) either did not change or increased by only 30 to 60 plants/ha/yr during this period. Responses to kangaroo grazing were strongest during 'normal', post-drought years (1980-82) when Eragrostis xerophila, Domin. decreased by 178 plants/ha/yr on grazed areas while on protected areas there was an increase of 299 plants/ha/yr. This response was due to effects on both recruitment and, as discussed by Gardiner (1986), survival. Maireana glomerifolia, another important plant for livestock was suppressed by kangaroo grazing via reduced recruitment during the 'normal' period. Other species (Frankenia paucifora, DC. and Eremophila spectabilis) responded positively to kangaroo grazing activity during the same period.


Sign in / Sign up

Export Citation Format

Share Document