scholarly journals Major environmental factors and traits of invasive alien plants determine their spatial distribution: a case study in Korea

2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Minwoo Oh ◽  
Yoonjeong Heo ◽  
Eun Ju Lee ◽  
Hyohyemi Lee

Abstract Background As trade increases, the influx of various alien species and their spread to new regions are prevalent, making them a general problem globally. Anthropogenic activities and climate change have led to alien species becoming distributed beyond their native range. As a result, alien species can be easily found anywhere, with the density of individuals varying across locations. The prevalent distribution of alien species adversely affects invaded ecosystems; thus, strategic management plans must be established to control them effectively. To this end, this study evaluated hotspots and cold-spots in the degree of distribution of invasive alien plant species, and major environmental factors related to hot spots were identified. We analyzed 10,287 distribution points of 126 species of alien plant species collected through a national survey of alien species using the hierarchical model of species communities (HMSC) framework. Results The explanatory and fourfold cross-validation predictive power of the model were 0.91 and 0.75 as area under the curve (AUC) values, respectively. Hotspots of invasive plants were found in the Seoul metropolitan area, Daegu metropolitan city, Chungcheongbuk-do Province, southwest shore, and Jeju Island. Hotspots were generally found where the highest maximum summer temperature, winter precipitation, and road density were observed. In contrast, seasonality in temperature, annual temperature range, precipitation during summer, and distance to rivers and the sea were negatively correlated to hotspots. The model showed that functional traits accounted for 55% of the variance explained by environmental factors. Species with a higher specific leaf area were found where temperature seasonality was low. Taller species were associated with a larger annual temperature range. Heavier seed mass was associated with a maximum summer temperature > 29 °C. Conclusions This study showed that hotspots contained 2.1 times more alien plants on average than cold-spots. Hotspots of invasive plants tended to appear under less stressful climate conditions, such as low fluctuations in temperature and precipitation. In addition, disturbance by anthropogenic factors and water flow positively affected hotspots. These results were consistent with previous reports on the ruderal and competitive strategies of invasive plants, not the stress-tolerant strategy. Our results supported that the functional traits of alien plants are closely related to the ecological strategies of plants by shaping the response of species to various environmental filters. Therefore, to control alien plants effectively, the occurrence of disturbed sites where alien plants can grow in large quantities should be minimized, and the waterfront of rivers must be managed.

Koedoe ◽  
2017 ◽  
Vol 59 (1) ◽  
Author(s):  
Arne B.R. Witt ◽  
Sospeter Kiambi ◽  
Tim Beale ◽  
Brian W. Van Wilgen

This article provides a preliminary list of alien plant species in the Serengeti-Mara ecosystem in East Africa. The list is based on broad-scale roadside surveys in the area and is supplemented by more detailed surveys of tourist facilities in the Masai-Mara National Reserve and adjoining conservancies. We encountered 245 alien plant species; significantly more than previous studies, of which 62 (25%) were considered to have established self-perpetuating populations in areas away from human habitation. These included species which had either been intentionally or accidentally introduced. Of the 245 alien plants, 212 (including four species considered to be native to the region) were intentionally introduced into gardens in the National Reserve and 51 (24%) had established naturalised populations within the boundaries of these tourism facilities. Of the 51 naturalised species, 23 (11% of the 212 alien species) were recorded as being invasive within the ecosystem, outside of lodges and away from other human habitation. Currently, the Serengeti-Mara ecosystem is relatively free of widespread and abundant invasive alien plants, with a few exceptions, but there are extensive populations outside of the ecosystem, particularly to the west, from where they could spread. We address the potential impacts of six species that we consider to pose the highest risks (Parthenium hysterophorus, Opuntia stricta, Tithonia diversifolia, Lantana camara, Chromolaena odorata and Prosopis juliflora). Although invasive alien plants pose substantial threats to the integrity of the ecosystem, this has not yet been widely recognised. We predict that in the absence of efforts to contain, or reverse the spread of invasive alien plants, the condition of rangelands will deteriorate, with severe negative impacts on migrating large mammals, especially wildebeest, zebra and gazelles. This will, in turn, have a substantial negative impact on tourism, which is a major economic activity in the area.Conservation implications: Invasive alien plants pose significant threats to the integrity of the Serengeti-Mara ecosystem and steps will need to be taken to prevent these impacts. The most important of these would be the removal of alien species from tourist facilities, especially those which are known to be naturalised or invasive, the introduction of control programmes aimed at eliminating outlier invasive plant populations to slow down the spread, and the widespread use of biological control wherever possible.


NeoBiota ◽  
2020 ◽  
Vol 58 ◽  
pp. 55-74
Author(s):  
Marija Milanović ◽  
Sonja Knapp ◽  
Petr Pyšek ◽  
Ingolf Kühn

The success of alien plant species can be attributed to differences in functional traits compared to less successful aliens as well as to native species, and thus their adaptation to environmental conditions. Studies have shown that alien (especially invasive) plant species differ from native species in traits such as specific leaf area (SLA), height, seed size or flowering period, where invasive species showed significantly higher values for these traits. Different environmental conditions, though, may promote the success of native or alien species, leading to competitive exclusion due to dissimilarity in traits between the groups. However, native and alien species can also be similar, with environmental conditions selecting for the same set of traits across species. So far, the effect of traits on invasion success has been studied without considering environmental conditions. To understand this interaction we examined the trait–environment relationship within natives, and two groups of alien plant species differing in times of introduction (archaeophytes vs. neophytes). Further, we investigated the difference between non-invasive and invasive neophytes. We analyzed the relationship between functional traits of 1,300 plant species occurring in 1000 randomly selected grid-cells across Germany and across different climatic conditions and land-cover types. Our results show that temperature, precipitation, the proportion of natural habitats, as well as the number of land-cover patches and geological patches affect archaeophytes and neophytes differently, regarding their level of urbanity (in neophytes negative for all non-urban land covers) and self-pollination (mainly positive for archaeophytes). Similar patterns were observed between non-invasive and invasive neophytes, where additionally, SLA, storage organs and the beginning of flowering were strongly related to several environmental factors. Native species did not express any strong relationship between traits and environment, possibly due to a high internal heterogeneity within this group of species. The relationship between trait and environment was more pronounced in neophytes compared to archaeophytes, and most pronounced in invasive plants. The alien species at different stages of the invasion process showed both similarities and differences in terms of the relationship between traits and the environment, showing that the success of introduced species is context-dependent.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8034 ◽  
Author(s):  
Anna Bomanowska ◽  
Wojciech Adamowski ◽  
Izabella Kirpluk ◽  
Anna Otręba ◽  
Agnieszka Rewicz

Due to the relevance of protected areas to the conservation of native biota, the magnitude of invasions and threats posed by alien plants are currently important issues for the preservation of these areas. The paper summarises data on invasive alien plant species presence in the most valuable protected areas in Poland, i.e. national parks (NPs). We investigated the distribution of invasive alien plant species and management attempts concerning those species. We analysed data obtained from 23 national parks originating from published and unpublished sources. Invasive plants were present in all protected areas analysed, from two to 42 species in a particular national park, and 68 in total. The most widely distributed species were: Impatiens parviflora (present in 19 NPs), I. glandulifera (17), Solidago gigantea (17), Reynoutria japonica (17), and Robinia pseudoacacia (16). The conducted analyses showed that the number of invasive species decreased with the higher altitude (asl) of the national park. The most often managed species were Impatiens glandulifera (being removed in seven NPs), I. parviflora (six), Padus serotina (four) and Quercus rubra (four). In the majority of NPs, control activities are limited to small areas and singular species, thus having an incidental character. Only in five objects (Białowieża NP, Biebrza NP, Kampinos NP, Tuchola NP, Wigry NP), management has been focused on several species. We conclude that a lack of comprehensive management of invasive plant species in the majority of national parks currently limits the effectiveness of IAS (invasive alien species) eradication. Exchange of expertise among protected areas, documenting best practice examples, synthesising lessons learnt in IAS management, as well as the development of minimum standards for invasive plants surveillance and management are pivotal.


Author(s):  
Valentina D. Poliksenova ◽  
Alexander K. Khramtsov ◽  
Ivan S. Hirilovich ◽  
Nikolai A. Lemeza ◽  
Svetlana G. Sidorova ◽  
...  

The 228 species of phytopathogenic micromycetes parasitising alien plants included in the publication «Black book of the flora of Belarus: alien harmful plants» (Minsk, 2020) were identified in the course of the conducted research. It was found that out of 322 plant species listed in this edition phytopathogenic micromycetes were found on 182 species (56.5 %). It is noted that among the phytopathogenic micromycetes only 92 species and intraspecific taxon (40.4 %) belong to the alien species of the Republic of Belarus. Obviously, these phytopathogens are highly specialised and currently parasitise only on these invasive plant species. The remaining 136 species and intraspecific taxon (59.6 %) affect both native and alien plant species.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Minwoo Oh ◽  
Yoonjeong Heo ◽  
Eun Ju Lee ◽  
Hyohyemi Lee

Abstract Background As trade increases, the influx of various alien species and their spread to new regions are prevalent and no longer a special problem. Anthropogenic activities and climate changes have made the distribution of alien species out of their native range common. As a result, alien species can be easily found anywhere, and they have nothing but only a few differences in intensity. The prevalent distribution of alien species adversely affects the ecosystem, and a strategic management plan must be established to control them effectively. To this end, hot spots and cold spots were analyzed according to the degree of distribution of invasive alien plants, and major environmental factors related to hot spots were found. We analyzed the 10,287 distribution points of 126 species of alien plants collected through the national survey of alien species by the hierarchical model of species communities (HMSC) framework. Results The explanatory and fourfold cross-validation predictive power of the model were 0.91 and 0.75 as AUC values, respectively. The hot spots of invasive plants were found in the Seoul metropolitan area, Daegu metropolitan city, Chungcheongbuk-do Province, southwest shore, and Jeju island. Generally, the hot spots were found where the higher maximum temperature of summer, precipitation of winter, and road density are observed, but temperature seasonality, annual temperature range, precipitation of the summer, and distance to river and sea were negatively related to the hot spots. According to the model, the functional traits accounted for 55% of the variance explained by the environmental factors. The species with higher specific leaf areas were more found where temperature seasonality was low. Taller species preferred the bigger annual temperature range. The heavier seed mass was only preferred when the max temperature of summer exceeded 29 °C. Conclusions In this study, hot spots were places where 2.1 times more alien plants were distributed on average than non-hot spots (33.5 vs 15.7 species). The hot spots of invasive plants were expected to appear in less stressful climate conditions, such as low fluctuation of temperature and precipitation. Also, the disturbance by anthropogenic factors or water flow had positive influences on the hot spots. These results were consistent with the previous reports about the ruderal or competitive strategies of invasive plants instead of the stress-tolerant strategy. The functional traits are closely related to the ecological strategies of plants by shaping the response of species to various environmental filters, and our result confirmed this. Therefore, in order to effectively control alien plants, it is judged that the occurrence of disturbed sites in which alien plants can grow in large quantities is minimized, and the river management of waterfronts is required.


Biologia ◽  
2017 ◽  
Vol 72 (2) ◽  
Author(s):  
Emilia Grzędzicka ◽  
Katarzyna Kowalik ◽  
Barbara Bacler-Żbikowska

AbstractInvasive plants are non-native, but in most cases naturalised, species that have successfully spread outside of their native range. Aliens invaded all habitats, are competing with native plants, thus, after the direct destruction of habitats, invasions are recognised as the second largest danger for biodiversity. Northern Red Oak is one of the most common invasive tree species dispersed primarily by birds, but new studies have shown that it is also spread continuously in a forest stand. The main aim of our research was to check how strong is the invasion of Northern Red Oak in Silesia Park, where it was introduced together with other alien plant species, and how this invasion interacts with bird diversity. Silesia Park was created 65 years ago on the surface largely ravaged by coal industry. Because many studies indicate birds as vectors of alien plants invasion, we examined the bird fauna in a described area, looking for species that can contribute to spreading oaks. Research showed the diversity of 50 bird species. Surface with a presence of Northern Red Oak was characterised by greater participation of alien plant species than the patch of natural forest, which existed there long before the park creation. The greatest bird diversity was found in the most natural part of Silesia Park, and the lowest in the area of invasion, especially in the case of species classified as “forest birds”. The presence of alien plants increased number of “non-forest” birds, mostly synanthropic species. We also found that Northern Red Oak spreads by spontaneous seed dispersal.


Author(s):  
A.L. Ebel ◽  
◽  
S.A. Sheremetova ◽  
I.A. Khrustaleva ◽  
T.O. Strelnikova ◽  
...  

As a result of the field studies, analysis of publications and herbarium materials, it has been established that by now the alien flora of the Republic of Khakassia includes about 140 species of vascular plants. Of this number, more than 30 species are invasive plants included in the “Black Book of Flora of Siberia” (2016). In recent years, there has been both a fairly rapid replenishment of the flora with alien plants and a noticeable dispersal of a number of invasive species across the territory of Khakassia. For the purpose of monitoring alien plant species, we use the capabilities of the international scientific network iNaturalist.org.


2021 ◽  
Vol 15 (1) ◽  
pp. 79-92
Author(s):  
T. V. Shupova ◽  

Introduction. In urban conditions, alien species of biota have become an integral part of the cultural landscape. Today, an overall assessment of the influence of alien species on the functioning of ecosystems of their secondary range as is relevant. Such an assessment requires knowledge of the connections formed by alien species in the secondary habitat. The purpose of the study was to find the connections of alien bird species with alien plant species in the parks and botanical gardens of Kyiv. Methods. Assessment was carried out in 10 forest parks, 3 botanical gardens, and 14 urban parks. In parks and botanical gardens, there is a wide range of plants alien to Kyiv Region, in contrast to forest parks. The number and distribution of birds were determined using the method of transect counts. The total area under study was about 370 hectares. Principal Component Analysis of the characteristics of habitats on which the number of alien birds may depend has been carried out. In the research, α-diversity indices of bird communities; number of people (individuals/km); number of pets (individuals/km); park’s area (ha); part of the territory; under the trees (%); part of alien species on plants communities (%) were analyzed. Results. Parus major, Turdus merula, Erithacus rubecula, Fringilla сoelebs dominate in all communities. Columba palumbus, Ficedula albicollis, Turdus pilaris, Columba livia, Apus apus, Sturnus vulgaris, Passer domesticus sometimes dominate in bird communities in parks and botanical gardens. There are no alien species in forest parks. 4 alien species nest in parks and botanical gardens: Streptopelia decaocto, Dendrocopos syriacus, Phoenicurus ochruros, Serinus serinus (from the last century). Phylloscopus trochiloides was observed for the first time. Nesting of Ph. trochiloides was not confirmed. Alien birds are not evenly distributed (0–3 species). Nest density is low: S. decaocto 0.013±0.01–0.021±0.01, D. syriacus 0.031±0.01–0.043±0.04, Ph. ochruros 0–0.034±0.02, S. serinus 0.013±0.01–0.017±0.01. We assume that alien bird species is an element that replaces the species that were eliminated from the community. Their nesting in forest parks is an indicator of a disruption of the functioning of the forest ecosystem as a result of anthropogenic transformation of the forest. The presence of alien species of birds in modern parks and botanical gardens is normal. Their biotopes were created on the sites of destroyed landscapes and with using alien plant species. Conclusion. In parks and botanical gardens, a specific structure of the plant community has developed due to the introduction of alien plant species, with a tree height of 3–5 m. As a consequence, alien birds find nesting stations in communities of nesting birds, which were not occupied by native species due to the absence of many species of tree canopy nesters and ground nesters birds. Alien species of birds also get access to vacant food resources. Alien birds use vacant resources. It was found that the area of parks has the most profound positive impact on the number of species of alien birds (+0.517), as well as the ratio of alien birds (+0.227). Other important correlations observed were the following: the number of species of alien birds in the bird communities – a part of alien species in plant communities (+0.084), the ratio of alien birds – part of alien species in plant communities (+0.041). The strongest negative connection is as follows: the number of species of alien birds in the bird communities – the number of pets (-0.213), the ratio of alien birds – the number of pets (-0.384).


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260390
Author(s):  
Kowiyou Yessoufou ◽  
Annie Estelle Ambani ◽  
Hosam O. Elansary ◽  
Orou G. Gaoue

Understanding why alien plant species are incorporated into the medicinal flora in several local communities is central to invasion biology and ethnobiology. Theories suggest that alien plants are incorporated in local pharmacopoeias because they are more versatile or contribute unique secondary chemistry which make them less therapeutically redundant, or simply because they are locally more abundant than native species. However, a lack of a comprehensive test of these hypotheses limits our understanding of the dynamics of plants knowledge, use and potential implications for invasion. Here, we tested the predictions of several of these hypotheses using a unique dataset on the woody medicinal flora of southern Africa. We found that the size of a plant family predicts the number of medicinal plants in that family, a support for the non-random hypothesis of medicinal plant selection. However, we found no support for the diversification hypothesis: i) both alien and native plants were used in the treatment of similar diseases; ii) significantly more native species than alien contribute to disease treatments particularly of parasitic infections and obstetric-gynecological diseases, and iii) alien and native species share similar therapeutic redundancy. However, we found support for the versatility hypothesis, i.e., alien plants were more versatile than natives. These findings imply that, although alien plant species are not therapeutically unique, they do provide more uses than native plants (versatility), thus suggesting that they may not have been introduced primarily for therapeutic reasons. We call for similar studies to be carried out on alien herbaceous plants for a broader understanding of the integration of alien plants into the pharmacopoeias of the receiving communities.


2020 ◽  
Vol 30 (1) ◽  
pp. 21-31 ◽  
Author(s):  
R. Chaudhary ◽  
B. B. Shrestha ◽  
H. Thapa ◽  
M. Siwakoti

Extent of plant invasions has been expected to be low in protected areas such as national parks due to low anthropogenic activities and high wilderness. However, recent researches across the world have revealed that plant invasions can be severe in the national parks with negative impacts on the protected species and ecosystems. Unfortunately, the status of plant invasions in the national parks of Nepal is mostly unknown. In this study, we sampled at seven locations inside the Parsa National Park (PNP) to document diversity and abundance of invasive alien plant species (IAPS) and their impacts on tree regeneration. Altogether, 130 quadrats of 10 m × 10 m were sampled. We recorded 14 IAPS in the PNP. Three of the IAPS (Chromolana odorata, Lantana camara and Mikania micrantha) were among the 100 of the world’s worst invasive alien species. C. odorata was found to be the most frequent IAPS with the highest cover. The frequency and cover of the IAPS were higher at the sites close to the settlements than at the sites away from the settlements. The species richness of the IAPS was also higher at the sites closer to the settlements than away. The sapling density of the tree species was found to have declined with the increasing cover of the IAPS suggesting that the IAPS had negatively affected tree regeneration. Our data revealed that the PNP has already witnessed massive plant invasions with widespread occurrence of three of the world’s worst invasive species. Therefore, it is high time to integrate management of invasive alien species in the management plan of the park.


Sign in / Sign up

Export Citation Format

Share Document