A Simple Continuous-Rearing Technique for the Bark Beetle Parasitoid, Roptrocerus xylophagorum (Ratzeburg)

1999 ◽  
Vol 34 (2) ◽  
pp. 260-264 ◽  
Author(s):  
Brian T. Sullivan ◽  
Katja C. Seltmann ◽  
C. Wayne Berisford
1976 ◽  
Vol 108 (3) ◽  
pp. 283-304 ◽  
Author(s):  
Frederick M. Stephen ◽  
Donald L. Dahlsten

AbstractContinuous trapping on the bark surface of Dendroctonus brevicomis LeConte infested trees in the central Sierra Nevada mountains was undertaken with the objective of determining the spatial and temporal arrival patterns of the natural enemies and other insect associates of the western pine beetle. Over 100 species of D. brevicomis associates were collected and patterns of arrival were described for many of these. The main bark beetle predators were trapped during D. brevicomis mass arrival and shortly thereafter. Enoclerus lecontei, Temnochila chlorodia, and Aulonium longum, all predaceous beetles on D. brevicomis adults and larvae, were among the first species to arrive, as was Medetera aldrichii (Diptera), a larval predator. The bark beetle parasites Roptrocerus xylophagorum and Dinotiscus (=Cecidostiba) burkei (Hymenoptera) were well synchronized with the beetles’ life cycle as they arrived late in the beetles’ larval stages when suitable hosts were available.Approximately twice as many associates were trapped in the first (spring) beetle generation as in the second (fall). Differences between species with regard to height distribution were common, and these often varied with seasonal beetle generation.Calculations of changes in species diversity through time, of the associate complex trapped at the bark surface, were made for both the first and second beetle generation. Linear correlation analysis indicated a highly significant increase in species diversity occurred from the time of the beetles’ mass arrival until brood emergence. This increase may correspond to an increase in diversity of the structure of the subcortical community, as more insect species arrived and progressively modified the habitat of the newly killed tree.


2003 ◽  
Vol 135 (5) ◽  
pp. 737-740 ◽  
Author(s):  
Sherah L. VanLaerhoven ◽  
Fred M. Stephen

As early as 1844, it was stated that the size of the host may influence the size of parasitoid adults (Ratzeburg 1844) and that parasitoid size may affect fecundity (Salt 1941). Although positive relationships between host and parasitoid body size have been supported in the literature (Tillman and Cate 1993; Heimpel and Rosenheim 1995), this relationship is not universal to all host–parasitoid systems (King 1991; Morse 1994). Although the relationship between host size and body size of parasitoid adults has been observed for some bark beetle parasitoids (Bushing 1967; Samson 1984), the relationship between body size and fecundity has not been studied for bark beetle parasitoids. Roptrocerus xylophagorum Ratzeburg (Hymenoptera: Pteromalidae) is a bark beetle parasitoid with a wide host range that includes beetles in the genera Dendroctonus, Ips, and Scolytus (Bushing 1967).


Author(s):  
Charles C. Rhoades ◽  
Robert M. Hubbard ◽  
Paul R. Hood ◽  
Banning J. Starr ◽  
Daniel B. Tinker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document