Responses of Ips pini (Say), Pityogenes knechteli Swaine and Associated Beetles (Coleoptera) to Host Monoterpenes in Stands of Lodgepole Pine

2003 ◽  
Vol 38 (4) ◽  
pp. 602-611 ◽  
Author(s):  
Daniel R. Miller ◽  
John H. Borden

We conducted seven experiments in stands of mature lodgepole pine in southern British Columbia to elucidate the role of host volatiles in the semiochemical ecology of the pine engraver, Ips pini (Say) (Coleoptera: Scolytidae), with particular reference to the behavioral responses of predators and competing species of bark beetles. Our results demonstrated that the attraction of Ips pini and the bark beetle predators Lasconotus complex LeConte (Colydiidae), Thanasimus undatulus (Say) (Cleridae) and a Corticeus sp. (Tenebrionidae) were increased by 3-carene. In contrast, attraction of the bark beetle Pityogenes knechteli Swaine (Scolytidae) to ipsdienol was interrupted by 3-carene and α-pinene. Attraction of L. complex to ipsdienol was increased by γ-terpinene, a compound attractive to the mountain pine beetle, Dendroctonus ponderosae Hopkins (Scolytidae). Terpinolene interrupted the attraction of I. pini to ipsdienol.

1994 ◽  
Vol 126 (2) ◽  
pp. 269-276 ◽  
Author(s):  
Therese M. Poland ◽  
John H. Borden

AbstractThe pine engraver, Ips pini Say, and Pityogenes knechteli Swaine often co-exist in lodgepole pine, Pinus contoita var. latifolia Engelmann. We tested the hypotheses that P. knechteli produces an attractive pheromone and that the attraction of P. knechteli and I. pint to conspecifics is inhibited by the presence of the other species. Pityogenes knechteli males and females were attracted to bolts infested with conspecific males and to bolts infested with I. pini males; however, there was no significant cross-attraction of I. pini males or females to bolts infested with P. knechteli males. Attraction of P. knechteli and I. pint males and females to bolts infested with conspecific males was not inhibited in the presence of bolts infested with males of the other bark beetle species. Pityogenes knechteli has no potential for competitive displacement of I. pini but may enhance the adverse effect of I. pini on the mountain pine beetle, Dendroctonus ponderosae Hopkins.


1985 ◽  
Vol 117 (11) ◽  
pp. 1445-1446 ◽  
Author(s):  
Charles E. Richmond

The mountain pine beetle, Dendroctonus ponderosae Hopkins, is one of the most destructive bark beetles found on pine in western North America (McCambridge et al. 1979), particularly in forests of lodgepole pine, Pinus contorta Douglas var. latifolia (Furniss and Carolin 1977). The treatment registered in the United States for the protection of high-value trees in residential areas and recreational areas is 2% carbaryl applied to the bole of the tree with a hydraulic sprayer. Recently, pine oil, a derivative of paper pulp waste, was found to be an effective non-insecticidal repellent against several species of bark beetles (Nijholt et al. 1981).


2020 ◽  
Vol 472 ◽  
pp. 118257
Author(s):  
Jennifer G. Klutsch ◽  
Gail Classens ◽  
Caroline Whitehouse ◽  
James F. Cahill ◽  
Nadir Erbilgin

1987 ◽  
Vol 65 (1) ◽  
pp. 95-102 ◽  
Author(s):  
H. S. Whitney ◽  
R. J. Bandoni ◽  
F. Oberwinkler

A new basidiomycete, Entomocorticium dendroctoni Whitn., Band. & Oberw., gen. et sp. nov., is described and illustrated. This cryptic fungus intermingles with blue stain fungi and produces abundant essentially sessile basidiospores in the galleries and pupal chambers of the mountain pine bark beetle (Dendroctonus ponderosae Hopkins Coleoptera: Scolytidae) in lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.). The insect apparently disseminates the fungus. Experimentally, young partially insectary reared adult beetles fed E. dendroctoni produced 19% more eggs than beetles fed the blue stain fungi.


1992 ◽  
Vol 22 (4) ◽  
pp. 436-441 ◽  
Author(s):  
Patrick J. Shea ◽  
Mark D. McGregor ◽  
Gary E. Daterman

Mountain pine beetle, Dendroctonusponderosae Hopkins, is the primary pest affecting lodgepole pine, Pinuscontorta var. latifolia Engelm., ecosystems in western North America. In 1988, aerial treatments of the antiaggregation pheromone, verbenone, were applied to lodgepole pine stands infested with mountain pine beetle in northwestern Montana. The pheromone was formulated by PHERO TECH Inc. in controlled-release, cylindrical 5 × 5 mm plastic beads and applied without benefit of a sticker at the rate of 54 g verbenone per hectare. There were significantly fewer successfully attacked trees on the treated plots, as evidenced by (i) a fourfold greater incidence of current-year attacked trees per hectare in the untreated check plots and (ii) the significantly lower (α = 0.05) ratio of 1988:1987 attacked trees in the treated plots. Further, the number of trees per hectare resisting attacks (as reflected by number of trees pitching out bark beetles) was higher (α = 0.05) in the treated plots. More pitch outs occurred in treated plots presumably because avoidance of verbenone by beetles reduced the number of beetles below that needed to overcome the natural resistance of attacked trees.


Author(s):  
Larry Haimowitz ◽  
Scott Shaw

A survey of parasitoid wasps (Hymenoptera: Braconidae) in Grand Teton National Park reveals undiscovered (but not unexpected) diversity, as well as changes in diversity associated with the bark beetle epidemic and the unusually warm, dry year. Our 2012 survey found nearly the same number of Braconidae subfamilies (18 vs 19) as a 2002 survey (Shaw 2002); a remarkable amount of diversity given that the 2002 survey was based upon five times as many specimens. Eleven species found in this study are new distribution records for the Greater Yellowstone Ecosystem (GYE), which points to much undiscovered local diversity. Differences from previous studies are possibly due to the unusual warmth and dryness of spring 2012, along with some influence from beetle kill. We provide a list of parasitoids and predators associated with mountain pine beetle (Dendroctonus ponderosae Hopkins) in the Greater Yellowstone Ecosystem (GYE), a stepping stone for further research to determine the role of natural enemies in bark beetle outbreak dynamics in the GYE.


1964 ◽  
Vol 42 (5) ◽  
pp. 527-532 ◽  
Author(s):  
Robena C. Robinson-Jeffrey ◽  
A. H. Hertha Grinchenko

A new fungus, Ceratocystis huntii sp. nov., occurring on lodgepole pine (Pinus conlorla Dougl. var. latifolia Engelm.), attacked by the mountain pine beetle (Dendroctonusmonticolae Hopk), is described and figured.


1999 ◽  
Vol 131 (6) ◽  
pp. 825-827 ◽  
Author(s):  
L. Safranyik ◽  
D.A. Linton ◽  
T.L. Shore

Lodgepole pines, Pinus contorta var. contorta Engelmann, killed by mountain pine beetle, Dendroctonus ponderosae Hopkins, are often subsequently infested by other scolytid species (Safranyik et al. 1996). Ips pini (Say) breeds in the phloem region of the main bole and larger branches in areas not occupied by mountain pine beetle. Adults emerge in the fall and drop to overwinter in the duff near the bases of their brood trees (Safranyik et al. 1996). Hylurgops porosus (LeConte) infests lodgepole pine (Keen 1952; Bright 1976) stumps or severely weakened trees near the root collar and in large roots (Wood 1982). We examined the pattern of emergence of I. pini and H. porosus from the duff around infested trees to describe changes in density over distance from the trees.


Sign in / Sign up

Export Citation Format

Share Document