scholarly journals The influence of ultrasound on nucleation in electrodeposition of lead dioxide on a nickel substrate

2021 ◽  
Vol 21 (2) ◽  
pp. 108-113
Author(s):  
Vasiliy A. Korotkov ◽  
◽  
Varvara I. Shpekina ◽  
Nina D. Solovyova ◽  
◽  
...  

The effect of ultrasound on the electrodeposition of lead dioxide from lead (II) nitrate on a nickel substrate was studied. It was shown that the highest electrochemical characteristics are observed for the prototypes of backup power sources based on the Pb/HClO4/PbO2 system, in which lead dioxide obtained by electrodeposition under the influence of an ultrasonic field on a nickel substrate was used.

Author(s):  
Michael G. Izenson ◽  
Roger W. Hill

Fuel cells based on polymer electrolyte membranes (PEMs) are attractive power sources because they are efficient, non-polluting, and do not rely on non-renewable fossil fuels. Water management is a critical design issue for these fuel cells because the PEM must be maintained at the proper water content to remain ionically conducting without flooding the electrodes. Furthermore, portable PEM power systems should operate at water balance. That is, water losses from the cell should be balanced by the rate of water production from the fuel cell reaction. A portable system that operates at water balance does not require an external supply of water. The rate of water production depends on the cell’s electrochemical characteristics. The rate of water loss depends on the flow rates of reactants and products, transport of water and fuel across the PEM, and the stack operating temperature. This paper presents the basic design relationships that govern water balance in a PEM fuel cell. Specific calculations are presented based on data from hydrogen/air and direct methanol fuel cells currently under development for portable power systems. We will show how the water balance operating point depends on the cell operating parameters and show the sensitivity to off-design conditions.


2012 ◽  
Vol 217 ◽  
pp. 193-198 ◽  
Author(s):  
Branimir N. Grgur ◽  
Aleksandar Žeradjanin ◽  
Milica M. Gvozdenović ◽  
Miodrag D. Maksimović ◽  
Tomislav Lj. Trišović ◽  
...  

Author(s):  
George H. N. Riddle ◽  
Benjamin M. Siegel

A routine procedure for growing very thin graphite substrate films has been developed. The films are grown pyrolytically in an ultra-high vacuum chamber by exposing (111) epitaxial nickel films to carbon monoxide gas. The nickel serves as a catalyst for the disproportionation of CO through the reaction 2C0 → C + CO2. The nickel catalyst is prepared by evaporation onto artificial mica at 400°C and annealing for 1/2 hour at 600°C in vacuum. Exposure of the annealed nickel to 1 torr CO for 3 hours at 500°C results in the growth of very thin continuous graphite films. The graphite is stripped from its nickel substrate in acid and mounted on holey formvar support films for use as specimen substrates.The graphite films, self-supporting over formvar holes up to five microns in diameter, have been studied by bright and dark field electron microscopy, by electron diffraction, and have been shadowed to reveal their topography and thickness. The films consist of individual crystallites typically a micron across with their basal planes parallel to the surface but oriented in different, apparently random directions about the normal to the basal plane.


Author(s):  
M. T. Tinker ◽  
L. W. Hobbs

There is considerable technological interest in oxidation of nickel because of the importance of nickel-base superalloys in high-temperature oxidizing environments. NiO scales on nickel grow classically, by outward diffusion of nickel through the scale, and are among the most studied of oxidation systems. We report here the first extensive characterization by transmission electron microscopy of nickel oxide scales formed on bulk nickel substrates and sectioned both parallel and transversely to the Ni/NiO interface.Electrochemically-polished nickel sheet of 99.995% purity was oxidized at 1273 K in 0.1 MPa oxygen partial pressure for times between 5 s and 25 h. Parallel sections were produced using a combination of electropolishing of the nickel substrate and ion-beam thinning of the scale to any desired depth in the scale. Transverse sections were prepared by encasing stacked strips of oxidized nickel sheet in epoxy resin, sectioning transversely and ion-beam thinning until thin area spanning one or more interfaces was obtained.


2020 ◽  
Vol 7 (3) ◽  
pp. 11-22
Author(s):  
VALERY ANDREEV ◽  
◽  
ALEXANDER POPOV

A reduced model has been developed to describe the time evolution of a discharge in an iron core tokamak, taking into account the nonlinear behavior of the ferromagnetic during the discharge. The calculation of the discharge scenario and program regime in the tokamak is formulated as an inverse problem - the optimal control problem. The methods for solving the problem are compared and the analysis of the correctness and stability of the control problem is carried out. A model of “quasi-optimal” control is proposed, which allows one to take into account real power sources. The discharge scenarios are calculated for the T-15 tokamak with an iron core.


2020 ◽  
Vol 14 (3) ◽  
pp. 7235-7243
Author(s):  
N.M. Ali ◽  
F. Dzaharudin ◽  
E.A. Alias

Microbubbles have the potential to be used for diagnostic imaging and therapeutic delivery. However, the transition from microbubbles currently being used as ultrasound contrast agents to achieve its’ potentials in the biomedical field requires more in depth understanding. Of particular importance is the influence of microbubble encapsulation of a microbubble near a vessel wall on the dynamical behaviour as it stabilizes the bubble. However, many bubble studies do not consider shell encapsulation in their studies. In this work, the dynamics of an encapsulated microbubble near a boundary was studied by numerically solving the governing equations for microbubble oscillation. In order to elucidate the effects of a boundary to the non-linear microbubble oscillation the separation distances between microbubble will be varied along with the acoustic driving. The complex nonlinear vibration response was studied in terms of bifurcation diagrams and the maximum radial expansion. It was found that the increase in distance between the boundary and the encapsulated bubble will increase the oscillation amplitude. When the value of pressure amplitude increased the single bubble is more likely to exhibit the chaotic behaviour and maximum radius also increase as the inter wall-bubble distance is gradually increased. While, with higher driving frequency the maximum radial expansion decreases and suppress the chaotic behaviour.


Sign in / Sign up

Export Citation Format

Share Document