scholarly journals An In-Depth Analysis of Water Quality Using GIS and Heavy Metal Pollution Index near a Gold Mining Area, Qorveh, Iran

Author(s):  
Mahsa Jahangiri-rad ◽  
Mohsen Shariati ◽  
Mahdieh Yaaghoubi ◽  
Ali Haghmoradkhani ◽  
Abbas Akbarzadeh

Introduction: Inappropriate management of mining activities may bring about water pollution and pose a heavy complication on aquatic ecosystem and humans. The study aimed to evaluate the effect of Qorveh gold mining activities on the quality of nearby groundwater. Materials and Methods: The concentration of seven eco-toxic metals along with some general hydrochemical parameters were investigated for 27 sampling stations in the study area using Atomic Absorption Spectrometry (AAS) and conventional hydrochemical methods. The analysis results were further applied to compute pollution indices, namely heavy metal pollution index (HPI) for irrigation purposes. Results: The main elements were within the World Health Organization (WHO) and Iranian National Water Standards (INWS) for irrigation water quality, except for NH4+ in some sampling points. The concentration of heavy metals followed the order Cu > Zn > Pb > Hg > Cd > As. The contents of Hg, As, Cd, and Cu in most sites were higher than the recommended values. Except for two stations, the value of HPI based on the mean concentration was found to be far beyond the critical pollution index value of 100, suggesting that the area is highly polluted with some heavy metals. Conclusion: Elevated concentration of trace elements found in groundwater of this area represented the release of harmful elements from gold mining activities on surrounding environment.

2017 ◽  
Vol 9 (2) ◽  
pp. 1139-1145
Author(s):  
Singla Chetan ◽  
Sanjay T. Satpute ◽  
Garg Sunil

The objective of the study was to reveal the seasonal variations in the groundwater quality with respect to heavy metals contamination near Buddha Nullah in Ludhiana district. To get the extent of trace metals contamination, groundwater samples from tube wells were randomly collected from 16 different points on both sides along the course of Buddha Nullah from areas of Bhamian Kalan, Khasi Kalan and Wallipur Kalan villages of Ludhiana district during first fortnight of June (Pre-monsoon), first fortnight of November (Post-monsoon) and first fortnight of January (Winter season) during the year 2013-14. The concentrations of toxic and heavy metals such as metalloids B, As, Pb; alkaline earth metals Mg, Ca; alkali metals Na, K; transition metals Cr, Mn, Fe, Cu, Zn, Cd and nonmetal S were determined. The heavy metal pollution index (HPI) was calculated. Most of the parameters were found within permissible limit of BIS, 2004. The average values of concentration of Ca, Cr, Mn, As and Pb for pre-monsoon season was higher than average concentration of post-monsoon and winter season. Overall HPI calculated based on the mean concentration of the heavy metals was found to be 18.11, 15.32 and 16.10 for pre-monsoon, post-monsoon and winter season, respectively, which was below the critical pollution index value of 100. The study recommended proper treatment to the sewage water which is being discharged into the Buddha Nullah.


2020 ◽  
Vol 81 (2) ◽  
pp. 3-12
Author(s):  
Tanya Vasileva

Ground waters may undergo a process of contamination in various ways, but the presence and amount of heavy metals in them can be indicative of their purity and usage. Apart from that, the heavy metals are among the most widely spread pollutants in nature, and their presence in groundwater indicates the existence of natural or anthropogenic sources of contamination. Ground waters polluted with heavy metals can also be very toxic and harmful to human health, and very damaging to the environment as well. In this article, the concentrations of eight toxic heavy metals (Fe, Mn, Cu, Al, Ni, Pb, Zn, Cr) were analyzed in the ground waters of the Mesta River Basin. A number of data for the concentrations of those heavy metals were used in order to calculate the following two indices describing groundwater purity: the Heavy Metal Pollution Index (HPI), and the Metal Index (MI). Both indices describe the overall quality of groundwater in direct relationship to the sum total of heavy metal concentrations. On one hand, minimal concentrations of heavy metals are necessary for the faultless functioning of organisms and indispensable to various biochemical processes, but on the other hand, in high concentrations, they might lead to dysfunctions in the cells of healthy organisms, and problems within their enzyme system. And these effects are entirely dependent upon the nature of the heavy metals involved. The research carried out so far shows that, according to HPI, about 65% of the shallow ground waters in the Mesta River Basin can be classified as being of excellent quality. The values obtained for the HPI are in the range of 3 to 64 (id est under the critical value of 100), or the groundwater is not contaminated with heavy metals. The MI varies within the range of 0.3 to 2.6, and therefore the groundwater from the zones with active water exchange can be characterized as being of slight to medium poor quality (41%), and the groundwater within Class II (or classified as pure with values of MI between 0.3 and 1.0) comprise approximately 59% of the overall catchment area.


2021 ◽  
Vol 13 (2) ◽  
pp. 145
Author(s):  
Margaretha Widyastuti ◽  
Galih Dwi Jayanto ◽  
Muhammad Ridho Irshabdillah

Code is one of the rivers influenced by a large number of waste-generating human activities in Yogyakarta, Indonesia. Despite continued discharges of pollution loads from anthropogenic waste, the heavy metal pollution index (HPI)—a water quality index assessing heavy metal ions present in a body of water—remains nationally underutilized. The research was intended to 1) analyze the river water quality based on metal and nonmetal parameters typical of domestic waste, 2) calculate HPI using either and both parameters, and 3) evaluate the resultant water quality status. The water quality data were the products of temporal river monitoring conducted by the Forestry and Environmental Office for Yogyakarta. The heavy metal parameters included Fe, Cu, Cd, Cr, and Pb, while the nonmetal parameters were BOD, COD, TSS, ammonia, oil and grease, and total coliforms. Each parameter value was compared with the water quality standard issued in Governor Regulation No. 20/2008.  The results showed that the HPI composite of heavy metal parameters classified the river water quality as excellent (2.52), whereas the one representing nonmetal parameters indicated bad quality (55.04). Nevertheless, based on the HPI composed of all parameters, the quality fell into the category excellent (3.94). Consequently, when all metal and nonmetal parameters are combined into the HPI calculation, the river shows a better water quality status.Keywords: HPI (Heavy Metal Pollution Index) water quality, domestic waste, heavy metal, Yogyakarta


Sign in / Sign up

Export Citation Format

Share Document