Transient Analysis of a Non-Preemptive Priority Queueing System

2018 ◽  
Vol 12 (3) ◽  
pp. 645-654
Author(s):  
V. S. S. Yadavalli ◽  
Diatha Krishna Sundar ◽  
Swaminathan Udayabaskaran ◽  
C. T. Dora Pravina
1986 ◽  
Vol 33 (2) ◽  
pp. 237-243 ◽  
Author(s):  
R. Sivasamy

In this paper a single server preemptive priority queueing system, consisting of two types of units, with unlimited Poisson inputs and exponential service time distributions, is studied. The higher priority units are served in batches according to a general bulk service rule and they have preemptive priority over lower priority units. Steady state queue length distributions, stability condition and the mean queue lengths are obtained.


2018 ◽  
Vol 28 (4) ◽  
pp. 695-704
Author(s):  
Dieter Fiems ◽  
Stijn De Vuyst

Abstract We consider the discrete-time G/GI/1 queueing system with multiple exhaustive vacations. By a transform approach, we obtain an expression for the probability generating function of the waiting time of customers in such a system. We then show that the results can be used to assess the performance of G/GI/1 queueing systems with server breakdowns as well as that of the low-priority queue of a preemptive MX+G/GI/1 priority queueing system. By calculating service completion times of low-priority customers, various preemptive breakdown/priority disciplines can be studied, including preemptive resume and preemptive repeat, as well as their combinations. We illustrate our approach with some numerical examples.


1994 ◽  
Vol 31 (A) ◽  
pp. 115-129 ◽  
Author(s):  
W. Böhm ◽  
S. G. Mohanty

In this contribution we consider an M/M/1 queueing model with general server vacations. Transient and steady state analysis are carried out in discrete time by combinatorial methods. Using weak convergence of discrete-parameter Markov chains we also obtain formulas for the corresponding continuous-time queueing model. As a special case we discuss briefly a queueing system with a T-policy operating.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Bin Sun ◽  
Moon Ho Lee ◽  
Sergey A. Dudin ◽  
Alexander N. Dudin

We consider a multiserver queueing system with two input flows. Type-1 customers have preemptive priority and are lost during arrival only if all servers are occupied by type-1 customers. If all servers are occupied, but some provide service to type-2 customers, service of type-2 customer is terminated and type-1 customer occupies the server. If the number of busy servers is less than the thresholdMduring type-2 customer arrival epoch, this customer is accepted. Otherwise, it is lost or becomes a retrial customer. It will retry to obtain service. Type-2 customer whose service is terminated is lost or moves to the pool of retrial customers. The service time is exponentially distributed with the rate dependent on the customer’s type. Such queueing system is suitable for modeling cognitive radio. Type-1 customers are interpreted as requests generated by primary users. Type-2 customers are generated by secondary or cognitive users. The problem of optimal choice of the thresholdMis the subject of this paper. Behavior of the system is described by the multidimensional Markov chain. Its generator, ergodicity condition, and stationary distribution are given. The system performance measures are obtained. The numerical results show the effectiveness of considered admission control.


2018 ◽  
Vol 6 (1) ◽  
pp. 69-84
Author(s):  
Jia Xu ◽  
Liwei Liu ◽  
Taozeng Zhu

AbstractWe consider anM/M/2 queueing system with two-heterogeneous servers and multiple vacations. Customers arrive according to a Poisson process. However, customers become impatient when the system is on vacation. We obtain explicit expressions for the time dependent probabilities, mean and variance of the system size at timetby employing probability generating functions, continued fractions and properties of the modified Bessel functions. Finally, two special cases are provided.


Sign in / Sign up

Export Citation Format

Share Document