Constancy of Speed of Light in Inertial Frames

2020 ◽  
Vol 14 (3) ◽  
pp. 375-382
2021 ◽  
Author(s):  
Sebastin Patrick Asokan

Abstract This paper shows that from the fact that the same Reality is perceived differently by the observers in different inertial frames, we can draw a simple and straightforward explanation for the constancy of light's speed in all inertial frames without any need for bringing in paradoxical Lorentz Transformation. This paper also proves that Lorentz Transformation has failed in its attempt to do the impossible task of establishing t' ≠ t to explain the constancy of the speed of light in all inertial frames without contradicting the interchangeability of frames demanded by the First Postulate of the Special Theory of Relativity. This paper also points out the misconceptions regarding the claimed experimental verifications of Lorentz Transformation's predictions in the Hafele–Keating experiment and μ meson experiment. This paper concludes that Einstein's Special Theory Relativity can stand on its own merits without Lorentz Transformation.


2021 ◽  
pp. 80-88
Author(s):  
Geoffrey Brooker

“The Lorentz transformation” derives the Lorentz transformation by an unusual route, from application of simple postulates: space is uniform and isotropic; inertial frames exist; physics is invariant under a change between inertial frames. The speed of light is an invariant, but this property is input last.


1988 ◽  
Vol 43 (10) ◽  
pp. 859-864
Author(s):  
H. E. Wilhelm

Abstract The Lorentz transformations between the space-time coordinates of a point in two inertial frames with arbitrary relative velocity, are reformulated as Galilei transformations with length and time contractions, by introducing the ether rest frame (in which light signals propagate isotropically with the vacuum speed of light). The generalized Galilei transformations for the (longitudinal) space coordinates (x1,2) and the time variables (t1,2) of a point in two inertial frames ∑1,2 are not only of analogous structure, but have remarkable symmetry properties, too. The appearing length and time contractions are absolute effects in the sense of Lorentz-Fitzgerald, i.e., a rod has its largest length and a clock its fastest rate when at rest in the ether frame ∑0. Thus, an analytical reformulation and a physical interpretation of the Lorentz transformations within Galilean relativity physics is achieved.


2021 ◽  
Vol 34 (4) ◽  
pp. 587-590
Author(s):  
Filip Dambi Filipescu

The kinematics of balls with mass in the inertial frames is like that in the frame at absolute rest. Practical examples of balls with mass studied at the limit when their mass is zero indicate that the kinematics of massless balls is like that of balls with mass. Light as a wave or particle is a massless entity. Therefore, it is natural to apply the kinematics behavior of the massless balls to light in its interactions with matter during the phenomena of emission and reflection. Thus, the kinematics of light depends on its kinetics of electromagnetic nature and by its mechanical interactions of emission and reflection with the matter. Light behaves in the inertial frames like in the frame at absolute rest, and the speed of light is the constant <mml:math display="inline"> <mml:mi>c</mml:mi> </mml:math> in the inertial frames in which the source and mirror are at rest. The terrestrial experiments with light cannot prove the motion of Earth. This study explains the result of the experiment performed at CERN, Geneva, in 1964. Including the massless balls within Newtonian mechanics, the emission, propagation, and reflection of light can be considered mechanical phenomena.


Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1235 ◽  
Author(s):  
Yaakov Friedman ◽  
Tzvi Scarr

We explore the role of symmetry in the theory of Special Relativity. Using the symmetry of the principle of relativity and eliminating the Galilean transformations, we obtain a universally preserved speed and an invariant metric, without assuming the constancy of the speed of light. We also obtain the spacetime transformations between inertial frames depending on this speed. From experimental evidence, this universally preserved speed is c, the speed of light, and the transformations are the usual Lorentz transformations. The ball of relativistically admissible velocities is a bounded symmetric domain with respect to the group of affine automorphisms. The generators of velocity addition lead to a relativistic dynamics equation. To obtain explicit solutions for the important case of the motion of a charged particle in constant, uniform, and perpendicular electric and magnetic fields, one can take advantage of an additional symmetry—the symmetric velocities. The corresponding bounded domain is symmetric with respect to the conformal maps. This leads to explicit analytic solutions for the motion of the charged particle.


Author(s):  
Ahmed Farag Ali

We study the localization of gravity through the matching point between non-inertial frames and local inertial frames. This localization of gravity lead to an emergence of a timeless state of the universe in a mathematically consistent way. We find a geometric interpretation of the speed of light and mass. The experimental evidence of the timeless state of the universe is the quantum entanglement and internal symmetries that are independent of time. Since the spin measurement is the manifestation of quantum entanglement measurement. Therefore, the spin of quantum particles is correlated with the relative gravitational red-shift at two different points. The same can be applied to all types of internal symmetries that are independent of time. Therefore gravity represents all measurements independent of time including quantum entanglement. We conclude that the gravity is the global $SU(3)\times SU(2)\times U(1)$ symmetry that produces gauge fields such as Electromagnetism, weak and strong nuclear force through localization with their internal symmetries correlated with the varying of relative gravitational red-shift . We also introduce a gravitational or geometric interpretation of spin-0, spin-1 and spin-1/2 states. We answered the question why do we measure matter and not anti-matter. We Introduce a solution for the Cosmological Constant Problem Value.


2021 ◽  
Author(s):  
SEBASTIN PATRICK ASOKAN

Abstract This paper shows that from the fact that the same Reality is perceived differently by the observers in different inertial frames, we can draw a simple and straightforward explanation for the constancy of light's speed in all inertial frames without any need for bringing in paradoxical Lorentz Transformation. This paper shows that the premise that each inertial frame has its unique time, which Lorentz Transformation introduced to explain the constancy of the speed of light in all inertial frames is incompatible with the interchangeability of the frames, an essential requisite of the First Postulate of the Special Theory of Relativity. This paper also points out the misconceptions regarding the claimed experimental verifications of Lorentz Transformation's predictions in the Hafele–Keating experiment and μ meson experiment. This paper hints at the possibility of attributing the observed slowing down of fast-moving clocks to the Relativistic Variation of Mass with Velocity instead of Time Dilation. This paper concludes that Einstein's Special Theory Relativity can stand on its own merits without Lorentz Transformation.


Author(s):  
James M. Hill ◽  
Barry J. Cox

We propose here two new transformations between inertial frames that apply for relative velocities greater than the speed of light, and that are complementary to the Lorentz transformation, giving rise to the Einstein special theory of relativity that applies to relative velocities less than the speed of light. The new transformations arise from the same mathematical framework as the Lorentz transformation, displaying singular behaviour when the relative velocity approaches the speed of light and generating the same addition law for velocities, but, most importantly, do not involve the need to introduce imaginary masses or complicated physics to provide well-defined expressions. Making use of the dependence on relative velocity of the Lorentz transformation, the paper provides an elementary derivation of the new transformations between inertial frames for relative velocities v in excess of the speed of light c , and further we suggest two possible criteria from which one might infer one set of transformations as physically more likely than the other. If the energy–momentum equations are to be invariant under the new transformations, then the mass and energy are given, respectively, by the formulae and where denotes the limiting momentum for infinite relative velocity. If, however, the requirement of invariance is removed, then we may propose new mass and energy equations, and an example having finite non-zero mass in the limit of infinite relative velocity is given. In this highly controversial topic, our particular purpose is not to enter into the merits of existing theories, but rather to present a succinct and carefully reasoned account of a new aspect of Einstein's theory of special relativity, which properly allows for faster than light motion.


1997 ◽  
Vol 161 ◽  
pp. 611-621
Author(s):  
Guillermo A. Lemarchand ◽  
Fernando R. Colomb ◽  
E. Eduardo Hurrell ◽  
Juan Carlos Olalde

AbstractProject META II, a full sky survey for artificial narrow-band signals, has been conducted from one of the two 30-m radiotelescopes of the Instituto Argentino de Radioastronomía (IAR). The search was performed near the 1420 Mhz line of neutral hydrogen, using a 8.4 million channels Fourier spectrometer of 0.05 Hz resolution and 400 kHz instantaneous bandwidth. The observing frequency was corrected both for motions with respect to three astronomical inertial frames, and for the effect of Earths rotation, which provides a characteristic changing signature for narrow-band signals of extraterrestrial origin. Among the 2 × 1013spectral channels analyzed, 29 extra-statistical narrow-band events were found, exceeding the average threshold of 1.7 × 10−23Wm−2. The strongest signals that survive culling for terrestrial interference lie in or near the galactic plane. A description of the project META II observing scheme and results is made as well as the possible interpretation of the results using the Cordes-Lazio-Sagan model based in interstellar scattering theory.


Sign in / Sign up

Export Citation Format

Share Document