SYNTHESIS OF MODEL HIGH-TEMPERATURE CERAMIC MATRICES BY THE METHOD OF SPARK PLASMA SINTERING AND THE STUDY OF THEIR PROPERTIES FOR THE PRODUCTION OF COMPOSITE MATERIALS

Author(s):  
B.Yu. Kuznetsov ◽  
◽  
O.Yu. Sorokin ◽  
M.L. Vaganova ◽  
I.V. Osin ◽  
...  
2020 ◽  
Vol 46 (14) ◽  
pp. 22733-22737
Author(s):  
P.Yu. Nikitin ◽  
I.A. Zhukov ◽  
A.E. Matveev ◽  
S.D. Sokolov ◽  
M.S. Boldin ◽  
...  

2007 ◽  
Vol 544-545 ◽  
pp. 825-828 ◽  
Author(s):  
Ho Jung Cho ◽  
Sung Yeal Bae ◽  
In Shup Ahn ◽  
Dong Kyu Park

TiC-based cermets attract much attention because of their excellent wear-resistance, high hardness at high temperature, good chemical stability, superior thermal deformation resistance. Therefore, titanium carbide is mainly used for cutting tools, grinding wheels, coated cutting tips and coated steel tools. In this research, Fe-TiC composite materials were fabricated by spark plasma sintering (SPS) after mechanical alloying. TiH2 and graphite powders were used to synthesize TiC phase. In order to compare the properties of sintered materials using mixture powder (D’AE+TiH2+graphite), commercial TiC powder was mixed with Distaloy AE (D’AE) powder as a same mechanical alloying method. Then, the shape of each mixture powder (D’AE+TiH2+graphite, D’AE+TiC (commercial)) and sintering properties were compared. TiC phase was synthesized by self-propagating high-temperature synthesis (SHS) reaction during spark plasma sintering. It was confirmed by using X-ray diffraction (XRD). Energy dispersive spectrometry (EDS) and Scanning electron microscopy (SEM) were used to observe shape of mixture powders and also sintering properties were examined such as hardness, relative density. In case of sintered material for 10min holding time at 1373K after mechanical alloying for 1 hour with D’AE, TiH2 and graphite, it indicated higher hardness value 49HR-C than a case using D’AE and TiC powder.


2013 ◽  
Vol 376 ◽  
pp. 38-41 ◽  
Author(s):  
Nikoloz Jalabadze ◽  
Lili Nadaraia ◽  
Levan Khundadze

Due the rapid heating rate combined with high pressure by the Spark Plasma Sintering (SPS) technologies possible manufacture a wide range of novel materials with exceptional properties that cannot be achieved using conventional sintering techniques. Hard metals are, from a technical point of view, one of the most successful composite materials. An overview of the metallurgical reactions during the SPS sintering process of powder mixtures for the manufacture of hard metals is presented. The relatively complex phase reactions in the multi-component system TiC-Mo-W-Ni are discussed. There were elaborated a new technology for the fabrication of nanocrystalline hard metals of a new class assigned for the production of articles with high different characteristics. Elaborated materials are characterized by high melting temperature, hardness, wear-resistance, and satisfactory strength at high temperature and corrosive resistance. Through the use of developed technology and the appropriate structural condition gives possibility to achieve high physical-mechanical characteristics. Obtaining of composite materials via elaborated technology is available from the corresponding complex compounds and directly consisting elements too. In this case High-temperature Self-propagation Synthesis (SHS) and spark plasma sintering/synthesis (SPS) process are united and during a single operation it is possible to get not only the powder materials but at the same time obtain required details.


Sign in / Sign up

Export Citation Format

Share Document