scholarly journals Friedreich’s ataxia induced pluripotent stem cell-derived cardiomyocytes display electrophysiological abnormalities and calcium handling deficiency

Aging ◽  
2017 ◽  
Vol 9 (5) ◽  
pp. 1440-1452 ◽  
Author(s):  
Duncan E. Crombie ◽  
Claire L. Curl ◽  
Antonia JA Raaijmakers ◽  
Priyadharshini Sivakumaran ◽  
Tejal Kulkarni ◽  
...  
Neurology ◽  
2012 ◽  
Vol 78 (Meeting Abstracts 1) ◽  
pp. P05.022-P05.022
Author(s):  
M. Pandolfo ◽  
S. Chintawar ◽  
M. Wattenhofer-Donze ◽  
H. Puccio

Neurology ◽  
2012 ◽  
Vol 78 (Meeting Abstracts 1) ◽  
pp. IN8-1.007-IN8-1.007
Author(s):  
M. Pandolfo ◽  
S. Chintawar ◽  
M. Wattenhofer-Donze ◽  
H. Puccio

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
LouJin Song ◽  
Masayuki Yazawa

Human induced pluripotent stem cell (iPSC)-based model of cardiac diseases has been proved to be useful and valuable for identifying new therapeutics. However, the use of human iPSC-based model of cardiac diseases for drug screen is hampered by the high-cost and complexity of methods used for reprogramming, in vitro differentiation, and phenotyping. To address the limitations, we first optimized a protocol for reprogramming of human fibroblasts and keratinocytes into pluripotency using single lipofection and the episomal vectors in a 24-well plate format. This method allowed us to generate multiple lines of integration-free and feeder-free iPSCs from seven patients with cardiac diseases and three controls. Second, we differentiated human iPSCs derived from Timothy syndrome patients into cardiomyocytes using a monolayer differentiation method. We found that Timothy syndrome cardiomyocytes showed slower, irregular contractions and abnormal calcium handling compared to controls, which were consistent with previous reports using a retroviral method for reprogramming and using an embryoid body-based method for cardiac differentiation. Third, we developed an efficient approach for recording action potentials and calcium transients simultaneously in control and patient cardiomyocytes using genetically encoded fluorescent indicators, ArcLight and R-GECO1. The dual optical recordings enabled us to observe prolonged action potentials and abnormal calcium handling in Timothy syndrome cardiomyocytes. We confirmed that roscovitine rescued the phenotypes in Timothy syndrome cardiomyocytes and these findings were consistent with previous studies using conventional electrophysiological recordings and calcium imaging with dyes. The approaches using our optimized methods and dual optical recordings will improve iPSC applicability for disease modeling to test potential therapeutics. With those new approaches in hand, next we plan to use the iPSC-based model of Timothy syndrome to investigate novel molecules involved in the pathogenesis of Timothy syndrome and to screen and identify new therapeutic compounds for Timothy syndrome patients.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Eleanor J Humphrey ◽  
Manuel M Mazo ◽  
Nadav Amdursky ◽  
Nicholas S Peters ◽  
Molly M Stevens ◽  
...  

Tissue engineering provides a promising method of introducing functional cardiomyocytes (CMs) to damaged myocardium after myocardial infarction; however, finding a biocompatible construct with the chemical and mechanical properties capable of supporting CM function is challenging. Serum albumin hydrogels are novel autogenic scaffolds with elastic properties that can be tailored to mimic the stiffness of native adult myocardium. We assessed the hypothesis that culturing immature CMs on these serum albumin hydrogels would affect CM gene expression and calcium handling. Neonatal cardiomyocyte (NRVM) viability was maintained for at least 14 days on the hydrogels, with clear sarcomeric striations. Cardiac gene expression was quantified using RT-qPCR and demonstrated an up regulation in many genes of cells cultured on hydrogels compared to glass (e.g. relative expression (log 2-ΔΔCt) of ryanodine receptor 2: glass= -2.3±0.5, hydrogel= -0.3±0.1,p<0.01; connexin 43:glass= -1.7±0.5, hydrogel= 0.3±0.1,p<0.01,n=4-6). Compared to glass, NRVMs on hydrogels have an increased time to peak of the calcium transients measured using Fluo-4AM and field stimulated at 1 Hz (tp glass=38±3 ms, tp hydrogel= 54±2 ms, p<0.01,n=4-6). Compared to glass the hydrogels also have a reduced time 50% decay (t50 glass=108±13 ms, t50 hydrogel=78±6 ms, p<0.05,n=4-6) and 80% decay (t80 glass=217±19 ms, t80 hydrogel= 152±10 ms,p<0.05,n=4-6). Human induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) were cultured on the hydrogels for up to 28 days. Calcium handling was faster in the iPSC-CMs cultured on the hydrogels in comparison to glass with a reduced time to peak (tp glass=281±43 ms, tp hydrogel= 186±8 ms, p<0.05, n=4) and time to 50% decay (t50 glass=269±15 ms, t50 hydrogel=204±10 ms,p<0.01,n=4) and 90% decay (t90 glass=535±33 ms, t90 hydrogel=397±19 ms, p<0.01,n=4). The serum albumin hydrogels are compatible with NRVM and iPSC-CM culture for at least 28 days. We demonstrate that the serum albumin hydrogels have significant effects on CM calcium cycling and have the potential for use in myocardial repair. Further study is required to determine the mechanisms involved in calcium handling alterations and then assess this engineered patch in vivo for cardiac repair.


Sign in / Sign up

Export Citation Format

Share Document