Abstract 161: Induced Pluripotent Stem Cell-based Model of Cardiac Arrhythmia: New Platform for Drug Screen

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
LouJin Song ◽  
Masayuki Yazawa

Human induced pluripotent stem cell (iPSC)-based model of cardiac diseases has been proved to be useful and valuable for identifying new therapeutics. However, the use of human iPSC-based model of cardiac diseases for drug screen is hampered by the high-cost and complexity of methods used for reprogramming, in vitro differentiation, and phenotyping. To address the limitations, we first optimized a protocol for reprogramming of human fibroblasts and keratinocytes into pluripotency using single lipofection and the episomal vectors in a 24-well plate format. This method allowed us to generate multiple lines of integration-free and feeder-free iPSCs from seven patients with cardiac diseases and three controls. Second, we differentiated human iPSCs derived from Timothy syndrome patients into cardiomyocytes using a monolayer differentiation method. We found that Timothy syndrome cardiomyocytes showed slower, irregular contractions and abnormal calcium handling compared to controls, which were consistent with previous reports using a retroviral method for reprogramming and using an embryoid body-based method for cardiac differentiation. Third, we developed an efficient approach for recording action potentials and calcium transients simultaneously in control and patient cardiomyocytes using genetically encoded fluorescent indicators, ArcLight and R-GECO1. The dual optical recordings enabled us to observe prolonged action potentials and abnormal calcium handling in Timothy syndrome cardiomyocytes. We confirmed that roscovitine rescued the phenotypes in Timothy syndrome cardiomyocytes and these findings were consistent with previous studies using conventional electrophysiological recordings and calcium imaging with dyes. The approaches using our optimized methods and dual optical recordings will improve iPSC applicability for disease modeling to test potential therapeutics. With those new approaches in hand, next we plan to use the iPSC-based model of Timothy syndrome to investigate novel molecules involved in the pathogenesis of Timothy syndrome and to screen and identify new therapeutic compounds for Timothy syndrome patients.

Aging ◽  
2017 ◽  
Vol 9 (5) ◽  
pp. 1440-1452 ◽  
Author(s):  
Duncan E. Crombie ◽  
Claire L. Curl ◽  
Antonia JA Raaijmakers ◽  
Priyadharshini Sivakumaran ◽  
Tejal Kulkarni ◽  
...  

2019 ◽  
Vol 20 (18) ◽  
pp. 4381 ◽  
Author(s):  
Andreas Brodehl ◽  
Hans Ebbinghaus ◽  
Marcus-André Deutsch ◽  
Jan Gummert ◽  
Anna Gärtner ◽  
...  

In the last few decades, many pathogenic or likely pathogenic genetic mutations in over hundred different genes have been described for non-ischemic, genetic cardiomyopathies. However, the functional knowledge about most of these mutations is still limited because the generation of adequate animal models is time-consuming and challenging. Therefore, human induced pluripotent stem cells (iPSCs) carrying specific cardiomyopathy-associated mutations are a promising alternative. Since the original discovery that pluripotency can be artificially induced by the expression of different transcription factors, various patient-specific-induced pluripotent stem cell lines have been generated to model non-ischemic, genetic cardiomyopathies in vitro. In this review, we describe the genetic landscape of non-ischemic, genetic cardiomyopathies and give an overview about different human iPSC lines, which have been developed for the disease modeling of inherited cardiomyopathies. We summarize different methods and protocols for the general differentiation of human iPSCs into cardiomyocytes. In addition, we describe methods and technologies to investigate functionally human iPSC-derived cardiomyocytes. Furthermore, we summarize novel genome editing approaches for the genetic manipulation of human iPSCs. This review provides an overview about the genetic landscape of inherited cardiomyopathies with a focus on iPSC technology, which might be of interest for clinicians and basic scientists interested in genetic cardiomyopathies.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Eleanor J Humphrey ◽  
Manuel M Mazo ◽  
Nadav Amdursky ◽  
Nicholas S Peters ◽  
Molly M Stevens ◽  
...  

Tissue engineering provides a promising method of introducing functional cardiomyocytes (CMs) to damaged myocardium after myocardial infarction; however, finding a biocompatible construct with the chemical and mechanical properties capable of supporting CM function is challenging. Serum albumin hydrogels are novel autogenic scaffolds with elastic properties that can be tailored to mimic the stiffness of native adult myocardium. We assessed the hypothesis that culturing immature CMs on these serum albumin hydrogels would affect CM gene expression and calcium handling. Neonatal cardiomyocyte (NRVM) viability was maintained for at least 14 days on the hydrogels, with clear sarcomeric striations. Cardiac gene expression was quantified using RT-qPCR and demonstrated an up regulation in many genes of cells cultured on hydrogels compared to glass (e.g. relative expression (log 2-ΔΔCt) of ryanodine receptor 2: glass= -2.3±0.5, hydrogel= -0.3±0.1,p<0.01; connexin 43:glass= -1.7±0.5, hydrogel= 0.3±0.1,p<0.01,n=4-6). Compared to glass, NRVMs on hydrogels have an increased time to peak of the calcium transients measured using Fluo-4AM and field stimulated at 1 Hz (tp glass=38±3 ms, tp hydrogel= 54±2 ms, p<0.01,n=4-6). Compared to glass the hydrogels also have a reduced time 50% decay (t50 glass=108±13 ms, t50 hydrogel=78±6 ms, p<0.05,n=4-6) and 80% decay (t80 glass=217±19 ms, t80 hydrogel= 152±10 ms,p<0.05,n=4-6). Human induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) were cultured on the hydrogels for up to 28 days. Calcium handling was faster in the iPSC-CMs cultured on the hydrogels in comparison to glass with a reduced time to peak (tp glass=281±43 ms, tp hydrogel= 186±8 ms, p<0.05, n=4) and time to 50% decay (t50 glass=269±15 ms, t50 hydrogel=204±10 ms,p<0.01,n=4) and 90% decay (t90 glass=535±33 ms, t90 hydrogel=397±19 ms, p<0.01,n=4). The serum albumin hydrogels are compatible with NRVM and iPSC-CM culture for at least 28 days. We demonstrate that the serum albumin hydrogels have significant effects on CM calcium cycling and have the potential for use in myocardial repair. Further study is required to determine the mechanisms involved in calcium handling alterations and then assess this engineered patch in vivo for cardiac repair.


2020 ◽  
Vol 21 (2) ◽  
pp. 657 ◽  
Author(s):  
Marc Pourrier ◽  
David Fedida

There is a need for improved in vitro models of inherited cardiac diseases to better understand basic cellular and molecular mechanisms and advance drug development. Most of these diseases are associated with arrhythmias, as a result of mutations in ion channel or ion channel-modulatory proteins. Thus far, the electrophysiological phenotype of these mutations has been typically studied using transgenic animal models and heterologous expression systems. Although they have played a major role in advancing the understanding of the pathophysiology of arrhythmogenesis, more physiological and predictive preclinical models are necessary to optimize the treatment strategy for individual patients. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have generated much interest as an alternative tool to model arrhythmogenic diseases. They provide a unique opportunity to recapitulate the native-like environment required for mutated proteins to reproduce the human cellular disease phenotype. However, it is also important to recognize the limitations of this technology, specifically their fetal electrophysiological phenotype, which differentiates them from adult human myocytes. In this review, we provide an overview of the major inherited arrhythmogenic cardiac diseases modeled using hiPSC-CMs and for which the cellular disease phenotype has been somewhat characterized.


2017 ◽  
Vol 26 (23) ◽  
pp. 1695-1705 ◽  
Author(s):  
Gary Duncan ◽  
Karl Firth ◽  
Vinoj George ◽  
Minh Duc Hoang ◽  
Andrew Staniforth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document