scholarly journals Context-Aware Representations for Knowledge Base Relation Extraction

Author(s):  
Daniil Sorokin ◽  
Iryna Gurevych
Author(s):  
Prachi Jain ◽  
Shikhar Murty ◽  
Mausam . ◽  
Soumen Chakrabarti

This paper analyzes the varied performance of Matrix Factorization (MF) on the related tasks of relation extraction and knowledge-base completion, which have been unified recently into a single framework of knowledge-base inference (KBI) [Toutanova et al., 2015]. We first propose a new evaluation protocol that makes comparisons between MF and Tensor Factorization (TF) models fair. We find that this results in a steep drop in MF performance. Our analysis attributes this to the high out-of-vocabulary (OOV) rate of entity pairs in test folds of commonly-used datasets. To alleviate this issue, we propose three extensions to MF. Our best model is a TF-augmented MF model. This hybrid model is robust and obtains strong results across various KBI datasets.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Jun Li ◽  
Guimin Huang ◽  
Jianheng Chen ◽  
Yabing Wang

Relation extraction is the underlying critical task of textual understanding. However, the existing methods currently have defects in instance selection and lack background knowledge for entity recognition. In this paper, we propose a knowledge-based attention model, which can make full use of supervised information from a knowledge base, to select an entity. We also design a method of dual convolutional neural networks (CNNs) considering the word embedding of each word is restricted by using a single training tool. The proposed model combines a CNN with an attention mechanism. The model inserts the word embedding and supervised information from the knowledge base into the CNN, performs convolution and pooling, and combines the knowledge base and CNN in the full connection layer. Based on these processes, the model not only obtains better entity representations but also improves the performance of relation extraction with the help of rich background knowledge. The experimental results demonstrate that the proposed model achieves competitive performance.


Semantic Web ◽  
2016 ◽  
Vol 7 (4) ◽  
pp. 335-349 ◽  
Author(s):  
Isabelle Augenstein ◽  
Diana Maynard ◽  
Fabio Ciravegna

Author(s):  
Nan Yan ◽  
Subin Huang ◽  
Chao Kong

Discovering entity synonymous relations is an important work for many entity-based applications. Existing entity synonymous relation extraction approaches are mainly based on lexical patterns or distributional corpus-level statistics, ignoring the context semantics between entities. For example, the contexts around ''apple'' determine whether ''apple'' is a kind of fruit or Apple Inc. In this paper, an entity synonymous relation extraction approach is proposed using context-aware permutation invariance. Specifically, a triplet network is used to obtain the permutation invariance between the entities to learn whether two given entities possess synonymous relation. To track more synonymous features, the relational context semantics and entity representations are integrated into the triplet network, which can improve the performance of extracting entity synonymous relations. The proposed approach is implemented on three real-world datasets. Experimental results demonstrate that the approach performs better than the other compared approaches on entity synonymous relation extraction task.


The aging population worldwide is expected to increase the prevalence of Alzheimer’s disease. As there is no medical curative treatment for this disease to date, alternative treatments have been applied to improve the patient’s brain and general health. One of these efforts includes providing Alzheimer’s patients with proper food and nutrition. In this paper, we propose a knowledge-powered personalized virtual coach to provide diet and nutrition assistance to patients of Alzheimer’s and/or their informal caregivers. The virtual coach is built on top of an ontology-enhanced knowledge base containing knowledge about patients, Alzheimer’s disease, food, and nutrition. Semantics-based searching and reasoning are performed on the knowledgebase to get personalized context-aware recommendation and education about healthy eating for Alzheimer’s patients. The proposed system has been implemented as a mobile application. Evaluation based on use cases has demonstrated the usefulness of this tool.


2014 ◽  
Vol 26 (4) ◽  
pp. 836-849 ◽  
Author(s):  
Zhixu Li ◽  
Mohamed A. Sharaf ◽  
Laurianne Sitbon ◽  
Xiaoyong Du ◽  
Xiaofang Zhou

Author(s):  
Shengbin Jia ◽  
Shijia E ◽  
Maozhen Li ◽  
Yang Xiang

Author(s):  
Rasha Hendawi ◽  
Juan Li ◽  
Shadi Alian

The aging population worldwide is expected to increase the prevalence of Alzheimer's disease. As there is no medical curative treatment for this disease to date, alternative treatments have been applied to improve the patient's brain and general health. One of these efforts includes providing Alzheimer's patients with proper food and nutrition. In this paper, the authors propose a knowledge-powered personalized virtual coach to provide diet and nutrition assistance to patients of Alzheimer's and/or their informal caregivers. The virtual coach is built on top of an ontology-enhanced knowledge base containing knowledge about patients, Alzheimer's disease, food, and nutrition. Semantics-based searching and reasoning are performed on the knowledge base to get personalized context-aware recommendation and education about healthy eating for Alzheimer's patients. The proposed system has been implemented as a mobile application. Evaluation based on use cases has demonstrated the usefulness of this tool.


Sign in / Sign up

Export Citation Format

Share Document