scholarly journals Multi-Task Learning for Chemical Named Entity Recognition with Chemical Compound Paraphrasing

2019 ◽  
Author(s):  
Taiki Watanabe ◽  
Akihiro Tamura ◽  
Takashi Ninomiya ◽  
Takuya Makino ◽  
Tomoya Iwakura
Author(s):  
Hema R. ◽  
Ajantha Devi

Chemical entities can be represented in different forms like chemical names, chemical formulae, and chemical structures. Because of the different classification frameworks for chemical names, the task of distinguishing proof or extraction of chemical elements with less ambiguous is considered a major test. Compound named entity recognition (NER) is the initial phase in any chemical-related data extraction strategy. The majority of the chemical NER is done utilizing dictionary-based, rule-based, and machine learning procedures. Recently, deep learning methods have evolved, and, in this chapter, the authors sketch out the various deep learning techniques applied for chemical NER. First, the authors introduced the fundamental concepts of chemical named entity recognition, the textual contents of chemical documents, and how these chemicals are represented in chemical literature. The chapter concludes with the strengths and weaknesses of the above methods and also the types of the chemical entities extracted.


2020 ◽  
Vol 36 (15) ◽  
pp. 4331-4338
Author(s):  
Mei Zuo ◽  
Yang Zhang

Abstract Motivation Named entity recognition is a critical and fundamental task for biomedical text mining. Recently, researchers have focused on exploiting deep neural networks for biomedical named entity recognition (Bio-NER). The performance of deep neural networks on a single dataset mostly depends on data quality and quantity while high-quality data tends to be limited in size. To alleviate task-specific data limitation, some studies explored the multi-task learning (MTL) for Bio-NER and achieved state-of-the-art performance. However, these MTL methods did not make full use of information from various datasets of Bio-NER. The performance of state-of-the-art MTL method was significantly limited by the number of training datasets. Results We propose two dataset-aware MTL approaches for Bio-NER which jointly train all models for numerous Bio-NER datasets, thus each of these models could discriminatively exploit information from all of related training datasets. Both of our two approaches achieve substantially better performance compared with the state-of-the-art MTL method on 14 out of 15 Bio-NER datasets. Furthermore, we implemented our approaches by incorporating Bio-NER and biomedical part-of-speech (POS) tagging datasets. The results verify Bio-NER and POS can significantly enhance one another. Availability and implementation Our source code is available at https://github.com/zmmzGitHub/MTL-BC-LBC-BioNER and all datasets are publicly available at https://github.com/cambridgeltl/MTL-Bioinformatics-2016. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document