scholarly journals Powdery mildew resistance of barley accessions from Dagestan

2021 ◽  
Vol 25 (5) ◽  
pp. 528-533
Author(s):  
R. A. Abdullaev ◽  
T. V. Lebedeva ◽  
N. V. Alpatieva ◽  
B. A. Batasheva ◽  
I. N. Anisimova ◽  
...  

Powdery mildew caused by the parasitic fungus Blumeria graminis (DC.) Golovin ex Speer f. sp. hordei Marchal is one of the most common diseases of barley. Growing resistant varieties can significantly minimize harmful effects of the pathogen. The specificity in the interaction between the fungus and its host plant requires a continuous search for new donors of the resistance trait. The powdery mildew resistance of 264 barley accessions from Dagestan and genetic control of the trait in resistant forms were studied under field and laboratory conditions. Forty-seven barley lines carrying previously identified powdery mildew resistance genes were also examined. During three years, the experimental material was evaluated under severe infection pressure at the Dagestan Experiment Station of VIR (North Caucasus, Derbent). Juvenile resistance against the Northwest (St. Petersburg, Pushkin) pathogen population was evaluated in a climatic chamber. The genetic control of B. graminis resistance in the selected accessions was studied with the application of hybridological and molecular analyses. The level of genetic diversity of Dagestan barley for effective resistance to powdery mildew is very low. Only two accessions, VIR-23787 and VIR-28212, are resistant against B. graminis at both seedling and adult plant stages. The high-level resistance of breeding line VIR-28212 originating from barley landrace VIR-17554 (Ep-80 Abyssinien) from Ethiopia is controlled by the recessive gene mlo11. Accession VIR-17554 is heterogeneous for the studied trait, with the powdery mildew resistant genotypes belonging to two varieties, dupliatrum (an awnless phenotype) and nigrinudum (an awned phenotype). In accession VIR-23787, a recessive resistance gene distinct from the mlo11 allele was identified. This accession is supposed to be protected by a new, effective pathogen resistance gene.

2015 ◽  
Vol 41 (4) ◽  
pp. 515 ◽  
Author(s):  
Zhong-Yi WANG ◽  
Hai-Ning FU ◽  
Su-Li SUN ◽  
Can-Xin DUAN ◽  
Xiao-Fei WU ◽  
...  

2018 ◽  
Vol 19 (12) ◽  
pp. 3933 ◽  
Author(s):  
Haimei Du ◽  
Zongxiang Tang ◽  
Qiong Duan ◽  
Shuyao Tang ◽  
Shulan Fu

Long arms of rye (Secale cereale L.) chromosome 6 (6RL) carry powdery mildew resistance genes. However, these sources of resistance have not yet been successfully used in commercial wheat cultivars. The development of small segment translocation chromosomes carrying resistance may result in lines carrying the 6R chromosome becoming more commercially acceptable. However, no wheat-rye 6RL small segment translocation line with powdery mildew resistance has been reported. In this study, a wheat-rye 6RLKu minichromosome addition line with powdery mildew resistance was identified, and this minichromosome was derived from the segment between L2.5 and L2.8 of the 6RLKu chromosome arm. Following irradiation, the 6RLKu minichromosome divided into two smaller segments, named 6RLKumi200 and 6RLKumi119, and these fragments participated in the formation of wheat-rye small segment translocation chromosomes 6DS/6RLKumi200 and 6DL/6RLKumi119, respectively. The powdery mildew resistance gene was found to be located on the 6RLKumi119 segment. Sixteen 6RLKumi119-specific markers were developed, and their products were cloned and sequenced. Nucleotide BLAST searches indicated that 14 of the 16 sequences had 91–100% similarity with nine scaffolds derived from 6R chromosome of S. cereale L. Lo7. The small segment translocation chromosome 6DL/6RLKumi119 makes the practical utilization in agriculture of powdery mildew resistance gene on 6RLKu more likely. The nine scaffolds are useful for further studying the structure and function of this small segment.


Sign in / Sign up

Export Citation Format

Share Document