microsatellite mapping
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 3)

H-INDEX

19
(FIVE YEARS 0)

2021 ◽  
Vol 15 (1) ◽  
pp. 77-87
Author(s):  
Ingrid Cândido de Oliveira Barbosa ◽  
Carlos Henrique Schneider ◽  
Leonardo Gusso Goll ◽  
Eliana Feldberg ◽  
Gislene Almeida Carvalho-Zilse

Melipona Illiger, 1806 is represented by 74 known species of stingless bees, distributed throughout the Neotropical region. Cytogenetically it is the most studied stingless bee genus of the tribe Meliponini. Member species are divided in two groups based on the volume of heterochromatin. This study aim was to analyze the composition and organization of chromatin of the stingless bee subspecies Melipona seminigra merrillae Cockerell, 1919 using classical and molecular cytogenetic techniques, so contributing to a better understanding of the processes of chromosomal changes within the genus. We confirm that M. seminigra merrillae has a chromosome number of 2n = 22 and n = 11, results that differ from those reported for the genus in the absence of B chromosomes. The heterochromatic pattern revealed a karyotype composed of chromosomes with a high heterochromatin content, which makes it difficult to visualize the centromere. Silver nitrate impregnation (Ag-NOR) showed transcriptionally active sites on the second chromosomal pair. Staining of base-specific fluorophores DAPI-CMA3 indicated a homogeneous distribution of intensely DAPI-stained heterochromatin, while CMA3 markings appeared on those terminal portions of the chromosomes corresponding to euchromatin. Similar to Ag-NOR, fluorescence in situ hybridization (FISH) with 18S ribosomal DNA probe revealed distinct signals on the second pair of chromosomes. Microsatellite mapping (GA)15 showed markings distributed in euchromatic regions, while mapping with (CA)15 showed marking patterns in heterochromatic regions, together with a fully marked chromosome pair. Microsatellite hybridization, both in heterochromatic and euchromatic regions, may be related to the activity of transposable elements. These are capable of forming new microsatellites that can be dispersed and amplified in different regions of the genome, demonstrating that repetitive sequences can evolve rapidly, thus resulting in within-genus diversification.


2021 ◽  
Vol 15 (1) ◽  
pp. 77-87
Author(s):  
Ingrid Cândido de Oliveira Barbosa ◽  
Carlos Henrique Schneider ◽  
Leonardo Gusso Goll ◽  
Eliana Feldberg ◽  
Gislene Almeida Carvalho-Zilse

Melipona Illiger, 1806 is represented by 74 known species of stingless bees, distributed throughout the Neotropical region. Cytogenetically it is the most studied stingless bee genus of the tribe Meliponini. Member species are divided in two groups based on the volume of heterochromatin. This study aim was to analyze the composition and organization of chromatin of the stingless bee subspecies Melipona seminigra merrillae Cockerell, 1919 using classical and molecular cytogenetic techniques, so contributing to a better understanding of the processes of chromosomal changes within the genus. We confirm that M. seminigra merrillae has a chromosome number of 2n = 22 and n = 11, results that differ from those reported for the genus in the absence of B chromosomes. The heterochromatic pattern revealed a karyotype composed of chromosomes with a high heterochromatin content, which makes it difficult to visualize the centromere. Silver nitrate impregnation (Ag-NOR) showed transcriptionally active sites on the second chromosomal pair. Staining of base-specific fluorophores DAPI-CMA3 indicated a homogeneous distribution of intensely DAPI-stained heterochromatin, while CMA3 markings appeared on those terminal portions of the chromosomes corresponding to euchromatin. Similar to Ag-NOR, fluorescence in situ hybridization (FISH) with 18S ribosomal DNA probe revealed distinct signals on the second pair of chromosomes. Microsatellite mapping (GA)15 showed markings distributed in euchromatic regions, while mapping with (CA)15 showed marking patterns in heterochromatic regions, together with a fully marked chromosome pair. Microsatellite hybridization, both in heterochromatic and euchromatic regions, may be related to the activity of transposable elements. These are capable of forming new microsatellites that can be dispersed and amplified in different regions of the genome, demonstrating that repetitive sequences can evolve rapidly, thus resulting in within-genus diversification.


2020 ◽  
Vol 160 (11-12) ◽  
pp. 711-718
Author(s):  
Priscila Marchioro ◽  
Lucio A.O. Campos ◽  
Denilce M. Lopes

The characterization of karyotypes is an important aspect in understanding the structure and evolution of genomes. Polybia is a genus of social wasps of the family Vespidae. This genus has 58 species, but for only 8 of these chromosome number and morphology have been reported in the literature. The aim of this study was to describe and characterize the Polybia fastidiosuscula Saussure karyotype, presenting the first case of a B chromosome in Vespidae. In addition, we investigated the chromatin composition of this species through C-banding, base-specific fluorochrome staining, and physical mapping of 7 microsatellites and 18S rDNA. Four colonies of P. fastidiosuscula from Minas Gerais and Paraná states, Brazil, were analyzed. The chromosome number identified was 2n = 34, and 2 colonies presented a B chromosome. We characterized the chromatin composition of this species, analyzing the existence of different microsatellite-rich heterochromatic regions which are also enriched with AT or GC base pairs. We suggest an intraspecific origin of the B chromosome based on the homology of the heterochromatic composition with A chromosomes and also verify that the TTAGG and TCAGG sequences are not telomeric, but only microsatellites that occur in the centromeres of most chromosomes, as well as GAG and CGG.


2017 ◽  
Vol 64 (8) ◽  
pp. 2105-2113 ◽  
Author(s):  
Y. Amagai ◽  
L. A. Burdenyuk-Tarasevych ◽  
N. P. Goncharov ◽  
N. Watanabe

2015 ◽  
Vol 89 (12) ◽  
pp. 6427-6434 ◽  
Author(s):  
Aaron W. Kolb ◽  
Inna V. Larsen ◽  
Jacqueline A. Cuellar ◽  
Curtis R. Brandt

ABSTRACTHerpes simplex virus 2 (HSV-2) is a major global pathogen, infecting 16% of people 15 to 49 years old worldwide and causing recurrent genital ulcers. Little is known about viral factors contributing to virulence, and there are currently only two genomic sequences available. In this study, we determined nearly complete genomic sequences of six additional HSV-2 isolates, using Illumina MiSeq. We report that HSV-2 has a genomic overall mean distance of 0.2355%, which is less than that of HSV-1. There were approximately 100 amino-acid-encoding and indels per genome. Microsatellite mapping found a bias toward intergenic regions in the nonconserved microsatellites and a genic bias in all detected tandem repeats. Extensive recombination between the HSV-2 strains was also strongly implied. This was the first study to analyze multiple HSV-2 sequences, and the data will be valuable in future evolutionary, virulence, and structure-function studies.IMPORTANCEHSV-2 is a significant worldwide pathogen, causing recurrent genital ulcers. Here we present six nearly complete HSV-2 genomic sequences, and, with the addition of two previously sequenced strains, for the first time genomic, phylogenetic, and recombination analysis was performed on multiple HSV-2 genomes. Our results show that microsatellite mapping found a bias toward intergenic regions in the nonconserved microsatellites and a genic bias in all detected tandem repeats and confirm that chimpanzee herpesvirus 1 (ChHV-1) is a separate species and that each of the HSV-2 strains is a genomic mosaic.


2015 ◽  
Vol 62 (7) ◽  
pp. 1079-1084 ◽  
Author(s):  
Y. Amagai ◽  
A. J. Aliyeva ◽  
N. Kh. Aminov ◽  
P. Martinek ◽  
N. Watanabe ◽  
...  

2013 ◽  
Vol 61 (2) ◽  
pp. 491-498 ◽  
Author(s):  
Y. Amagai ◽  
A. J. Aliyeva ◽  
N. Kh. Aminov ◽  
P. Martinek ◽  
N. Watanabe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document