scholarly journals Professional competence development when teaching computational informatics.

2021 ◽  
Vol 16 (5) ◽  
pp. 2575-2585
Author(s):  
Makhabbat Revshenova ◽  
Esen Bidaibekov ◽  
Victor Kornilov ◽  
Guldina Kamalova ◽  
Shirinkyz Shekerbekova ◽  
...  

Bachelors and graduate students are offered in the course of teaching computational informatics, the ability to solve non-standard mathematical problems, which, as a rule, are not included in the content of teaching computational informatics. The article aimed to analyze the application effectiveness of non-standard mathematical problems in the course of teaching computational informatics, elaboration of constructive computational solution algorithms of inverse problems for differential equations, during which the bachelors and graduate students develop own professional competencies. The research conducted a review of previous literature on the topic. Formulation of the inverse problem for differential equations for the investigation of which the computational mathematics finite difference methods are applied, is presented. In the course of investigation, it was revealed that at elaborating the constructive computational algorithms of its solution, the bachelors and graduate students develop not only fundamental knowledge in the field of applied and computational mathematics, computational informatics methods, but also develop the professional competences, including computational thinking. Key words: professional competence; computational informatics; computational mathematics methods; non-standard.

Author(s):  
Brian Street

This book develops a new theory of multi-parameter singular integrals associated with Carnot–Carathéodory balls. The book first details the classical theory of Calderón–Zygmund singular integrals and applications to linear partial differential equations. It then outlines the theory of multi-parameter Carnot–Carathéodory geometry, where the main tool is a quantitative version of the classical theorem of Frobenius. The book then gives several examples of multi-parameter singular integrals arising naturally in various problems. The final chapter of the book develops a general theory of singular integrals that generalizes and unifies these examples. This is one of the first general theories of multi-parameter singular integrals that goes beyond the product theory of singular integrals and their analogs. This book will interest graduate students and researchers working in singular integrals and related fields.


Author(s):  
Emily C. Bouck ◽  
Phil Sands ◽  
Holly Long ◽  
Aman Yadav

Increasingly in K–12 schools, students are gaining access to computational thinking (CT) and computer science (CS). This access, however, is not always extended to students with disabilities. One way to increase CT and CS (CT/CS) exposure for students with disabilities is through preparing special education teachers to do so. In this study, researchers explore exposing special education preservice teachers to the ideas of CT/CS in the context of a mathematics methods course for students with disabilities or those at risk of disability. Through analyzing lesson plans and reflections from 31 preservice special education teachers, the researchers learned that overall emerging promise exists with regard to the limited exposure of preservice special education teachers to CT/CS in mathematics. Specifically, preservice teachers demonstrated the ability to include CT/CS in math lesson plans and showed understanding of how CT/CS might enhance instruction with students with disabilities via reflections on these lessons. The researchers, however, also found a need for increased experiences and opportunities for preservice special education teachers with CT/CS to more positively impact access for students with disabilities.


2018 ◽  
Vol 7 (3) ◽  
pp. 31
Author(s):  
Rosa Virginia Hernández ◽  
Luis Fernando Mariño ◽  
Mawency Vergel

En este artículo se presenta la caracterización del conocimiento semántico evidenciado por un grupo de estudiantes en la representación externa a problemas de ecuaciones diferenciales lineales de segundo orden como modelos matemáticos. El trabajo fue cuantitativo de tipo exploratorio y descriptivo utilizando un cuestionario en la recolección de información. El soporte teórico que dio sentido al estudio fue el modelo de dos etapas propuesto por Mayer R. para la resolución de problemas matemáticos, el ciclo de modelación bajo la perspectiva cognitiva según Borromeo Ferri y la teoría de las representaciones de Goldin y Kaput. La investigación se centró específicamente en la fase de representación del modelo. Entre los principales hallazgos se destaca que cada participante hace su propia representación externa a conceptos como: sistema masa-resorte, peso, masa, punto de equilibrio, constante de elasticidad, punto de equilibrio, ley de Hooke, fuerza amortiguadora, fuerza externa, ley de Newton, entre otros. Se evidencian también dificultades en el tránsito del lenguaje natural al lenguaje matemático y la representación externa de cada una de los signos, símbolos o expresiones matemáticas inmersas en el problema de palabra, debido a que el resolutor tiene que construir un modelo mental de la situación real y plasmarlo en un modelo matemático. Lo anterior pone de manifiesto la importancia que tiene el conocimiento semántico en la etapa de traducción cuando se intentan resolver problemas como situaciones reales a modelar.Palabras clave: resolución de problemas, ciclos de modelación, problemas de palabra, representaciones externas, conocimiento extra matemático, modelación matemática. AbstractThis article presents the characterization of the semantic knowledge evidenced by a group of students in the external representation to problems of second order linear differential equations as mathematical models. The work was quantitative exploratory and descriptive using a questionnaire in the collection of information. The theoretical support that gave meaning to the study was the two-stage model proposed by Mayer R. for solving mathematical problems, the modeling cycle under the cognitive perspective according to Borromeo Ferri and the theory of representations of Goldin and Kaput. The research focused specifically on the representation phase of the model. Among the main findings is that each participant makes his own external representation to concepts such as: mass-spring system, weight, mass, equilibrium point, constant of elasticity, equilibrium point, Hooke's law, damping force, external force, law of Newton, among others. Difficulties are also evident in the transition from natural language to mathematical language and the external representation of each of the signs, symbols or mathematical expressions involved in the word problem, because the resolver has to construct a mental model of the real situation and translate it into a mathematical model. This demonstrates the importance of semantic knowledge in the translation stage when trying to solve problems as real situations to be modeledKeywords: problem solving, modeling cycles, word problems, external representations, extra mathematical knowledge, mathematical modeling.ResumoEste artigo apresenta a caracterização do conhecimento semântico evidenciado por um grupo de estudantes na representação externa a problemas de equações diferenciais lineares de segunda ordem como modelos matemáticos. O trabalho foi quantitativo exploratório e descritivo usando um questionário na coleta de informações. O suporte teórico que deu sentido ao estudo foi o modelo de dois estágios proposto por Mayer R. para resolver problemas matemáticos, o ciclo de modelagem sob a perspectiva cognitiva de acordo com Borromeo Ferri e a teoria das representações de Goldin e Kaput. A pesquisa focalizou especificamente a fase de representação do modelo. Entre os principais achados, cada participante faz sua própria representação externa para conceitos como: sistema de massa-mola, peso, massa, ponto de equilíbrio, constante de elasticidade, ponto de equilíbrio, lei de Hooke, força de amortecimento, força externa, lei de Newton, entre outros. As dificuldades também são evidentes na transição da linguagem natural para a linguagem matemática e a representação externa de cada um dos signos, símbolos ou expressões matemáticas envolvidas na palavra problema, porque o resolvedor tem que construir um modelo mental da situação real e traduzi-lo para um modelo matemático. Isso demonstra a importância do conhecimento semântico na fase de tradução ao tentar resolver problemas como situações reais a serem modeladas. ______________________________________________________ Palavras-chave: resolução de problemas, ciclos de modelagem, problemas de palavra, representação externa, conhecimento extra matemático, modelagem matemática


2021 ◽  
Vol 14 (3) ◽  
pp. 706-722
Author(s):  
Francis Ohene Boateng ◽  
Joseph Ackora-Prah ◽  
Benedict Barnes ◽  
John Amoah-Mensah

In this paper, we introduce a Finite Difference Fictitious Domain Wavelet Method (FDFDWM) for solving two dimensional (2D) linear elliptic  partial differential equations (PDEs) with Dirichlet boundary conditions on regular geometric domain. The method reduces the 2D PDE into a 1D system of ordinary differential equations and applies a compactly supported wavelet to approximate the solution. The problem is embedded in a fictitious domain to aid the enforcement of the Dirichlet boundary conditions. We present numerical analysis and show that our method yields better approximation to the solution of the Dirichlet problem than traditional methods like the finite element and finite difference methods.


2020 ◽  
Vol 35 ◽  
pp. 03002
Author(s):  
Alexander V. Baranov

The article discusses contextual technology of teaching and learning physics of IT students at the Technical University. The main goal of this research is development and analysis contextual technology to maintain and increase IT students’ interest in physics with parallel formation of computational thinking and competencies in computer science applications. This technology takes place in several contexts: the scientific method and modeling of physical processes, computational thinking and professional competence. The all contexts are present in four stages of the training cycle: lectures, seminars, lab works, and computer modeling of physical processes. As an example we demonstrate using the contextual technology for the physics course topic “Dynamics of a rigid body rotational motion” in all four stages of the training cycle. The example of student’s team development of the virtual lab work “Precession and nutation of a gyroscope” is given. According to the Novosibirsk State Technical University professors and students, the author’s technology has demonstrated its effectiveness in the formation of professional thinking and competencies of the IT students in teaching physics at the Technical University.


Author(s):  
Drew Polly

This chapter presents the theoretical background and overview of the design of an asynchronous online mathematics pedagogy course taken by graduate students who are seeking their initial teacher certification. The authors provide the theoretical underpinnings for the design of the course, and then using design-based research, describe the refinement of the course over three iterations of designing and implementing the course. Lastly, implications for the design and delivery of asynchronous online courses are discussed.


Author(s):  
Nardie L. J. A. Fanchamps ◽  
Lou Slangen ◽  
Paul Hennissen ◽  
Marcus Specht

AbstractThis study investigates the development of algorithmic thinking as a part of computational thinking skills and self-efficacy of primary school pupils using programmable robots in different instruction variants. Computational thinking is defined in the context of twenty-first century skills and describes processes involved in (re)formulating a problem in a way that a computer can process it. Programming robots offers specific affordances as it can be used to develop programs following a Sense-Reason-Act (SRA) cycle. The literature provides evidence that programming robots has the potential to enhance algorithmic thinking as a component of computational thinking. Specifically there are indications that pupils who use SRA-programming learn algorithmic skills better and achieve a higher level of self-efficacy in an open, scaffold learning environment than through direct instruction. In order to determine the influence of the instruction variant used, an experimental research design was made in which pupils solved algorithm-based mathematical problems (grid diagrams) in a preliminary measurement and their self-efficacy determined via a questionnaire. As an intervention, pupils learn to solve programming issues in pairs using “Lego NXT” robots and “Mindstorms” software in two instruction variants. The post-measurement consists of a Lego challenge, solving mathematical problems (grid diagrams), and a repeated self-efficacy questionnaire. This research shows an increase of our measures on algorithmic thinking dependent on the amount of SRA usage (though not significant). Programming using the SRA-cycle can be considered as the cause of the measured effect. The instruction variant used during the robotic intervention seems to play only a marginal role.


Sign in / Sign up

Export Citation Format

Share Document