scholarly journals Interacción computacional entre BIM y SAP para modelamiento de la deformación de cables aéreos en subestaciones de alta tensión

Author(s):  
Hector Oviedo ◽  
Gilbert L. Bothia ◽  
Elkin L. Henao

La instalación de cables para conexión entre equipos de subestaciones eléctricas, se diseñan considerando cargas debidas a corto circuito, peso propio, viento, entre otras, no obstante, omiten condiciones adicionales según la instalación final o excluyen cargas, como las presentes en zonas de alta actividad sísmica, aspectos que complementarían el cálculo de deformación del cable, por otro lado, se suele desconectar el esfuerzo de diseño en los modelos 3D, ya que estos únicamente emplean los puntos de anclaje y “splines” para definir su trayectoria. Conocer la deformación aproximada del cable es importante para la verificación de distancias de seguridad eléctricas, minimizando posibles inconvenientes en la fase de construcción. Este documento, presenta la integración de diversos modelos de cargas para cables, en una representación de elementos finitos con SAP2000, incluyendo condiciones finales de instalación y cargas sísmicas según IEEE 1527, garantizando estabilidad de conexión, distancias de seguridad eléctricas e integridad de equipos. Adicionalmente, se conectan los resultados de deformación con una aplicación desarrollada en Dynamo-Python para complementar el modelo BIM en Revit. La metodología se valida según casos de conexión documentados por el Pacific Earthquake Engineering Research Center (PEER), el cual registra medidas de deformación para cables empleados en subestaciones eléctricas bajo diferentes escenarios de carga e instalación. Con la integración propuesta, se obtienen deformaciones esperadas ante desplazamientos bajos, presentando un mejor ajuste de trayectoria y cálculo de esfuerzos según los reportados por PEER, no obstante para desplazamientos altos, se obtienen diferencias representativas en los esfuerzos medidos, aspecto por mejorar.

2020 ◽  
Author(s):  
Δέσποινα Σκουλίδου

Παρόλο που ο κλάδος της αντισεισμικής μηχανικής έχει γνωρίσει σημαντική ανάπτυξη τις τελευταίες δεκαετίες, πρόσφατα παραδείγματα σεισμών που είχαν ως αποτέλεσμα δυσανάλογα μεγάλες απώλειες, ζωών και οικονομικών, μεταξύ άλλων, αποδεικνύουν ότι η βελτίωσή του είναι απαραίτητη. Οι αδυναμίες που συχνά συναντώνται στην πράξη οφείλονται κυρίως σε ελλείψεις και σε ασάφειες των κανονιστικών κειμένων και των ισχυόντων αντισεισμικών κανονισμών, καθιστώντας την αναθεώρησή τους επιτακτική ανάγκη. Η παρούσα διατριβή εξετάζει τον τρόπο εφαρμογής της γωνίας πρόσπτωσης της σεισμικής δράσης κατά την ανάλυση κτιρίων. Συγκεκριμένα ο κύριος στόχος της διατριβής είναι να προσδιορίσει την επίδραση που έχει η γωνία πρόσπτωσης στην σεισμική απόκριση κτιριακών κατασκευών και να παρέχει μεθόδους ώστε να ληφθεί υπόψη κατά την αποτίμηση της σεισμικής συμπεριφοράς υφιστάμενων κτιρίων. Δύο διαφορετικές προσεγγίσεις εφαρμόζονται για τη μελέτη της γωνίας πρόσπτωσης, ανάλογα με τον τρόπο προσομοίωσης της σεισμικής δράσης. Συγκεκριμένα, σύμφωνα με ισχύοντα κανονιστικά κείμενα, η σεισμική δράση μπορεί να περιέχει αβεβαιότητα, όπως για παράδειγμα με τη χρήση ομάδας επιταχυνσιογραφημάτων, ή να είναι αιτιοκρατικής φύσεως, όπως για παράδειγμα με τη χρήση ενός κανονικοποιημένου φάσματος απόκρισης. Στην πρώτη προσέγγιση, η οποία καταλαμβάνει το μεγαλύτερο μέρος της διατριβής, εφαρμόζονται μέθοδοι ανάλυσης με βάση την επιτελεστικότητα και συγκεκριμένα ακολουθείται η μέθοδος. που παρέχεται από το Pacific Earthquake Engineering Research Center, χρησιμοποιώντας αβεβαιότητα στην προσομοίωση της σεισμικής δράσης. Ακολουθώντας τη μέθοδο αυτή, μετά την προσομοίωση έξι κτιρίων οπλισμένου σκυροδέματος (Ο/Σ) χρησιμοποιώντας κατάλληλο λογισμικό και την εξαγωγή των ιδιομορφικών χαρακτηριστικών τους, πραγματοποιείται ανάλυση σεισμικής επικινδυνότητας του πεδίου και στη συνέχεια γίνεται επιλογή κατάλληλων επιταχυνσιογραφημάτων. Ομάδες επιταχυνσιογραφημάτων διαφορετικού μεγέθους επιλέγονται για τη διέγερση των έξι κτιρίων και η επιρροή της γωνίας πρόσπτωσης εξετάζεται σε όλα τα ακόλουθα στάδια της μεθόδου. Δεδομένου ότι έχει αποδειχθεί πως το μέγεθος της ομάδας των επιταχυνσιογραφημάτων έχει σημαντική επιρροή στα αποτελέσματα της σεισμικής ανάλυσης, η συνδυασμένη επίδραση της γωνίας πρόσπτωσης και του μεγέθους της ομάδας επιταχυνσιογραφημάτων αναλύονται επίσης. Η επιρροή της γωνίας πρόσπτωσης και του μεγέθους της ομάδας εξετάζεται αρχικά στο δεύτερο στάδιο της μεθόδου, το οποίο περιλαμβάνει την ανάλυση των κτιρίων, μέσω της στατιστικής επεξεργασίας επιλεγμένων παραμέτρων απόκρισης. Οι παράμετροι απόκρισης εξετάζονται πιθανοτικά χρησιμοποιώντας μέτρα θέσης και μέτρα διασποράς των κατανομών τους. Επιπλέον, μελετάται το στατιστικό μοντέλο που μπορεί να χρησιμοποιηθεί ώστε να προσομοιώσει με μεγαλύτερη ακρίβεια και μικρότερο σφάλμα τις κατανομές των παραπάνω παραμέτρων απόκρισης. Στη συνέχεια, η επιρροή της γωνίας πρόσπτωσης και του μεγέθους της ομάδας επιταχυνσιογραφημάτων εξετάζεται στο στάδιο του υπολογισμού των απωλειών και συγκεκριμένα ως προς την καμπύλη τρωτότητας κατάρρευσης και ως προς την πιθανότητα κατάρρευσης των κατασκευών. Τέλος, η επιρροή της γωνίας πρόσπτωσης και του μεγέθους της ομάδας επιταχυνσιογραφημάτων εξετάζεται ως προς το κόστος επισκευής ή/και ανακατασκευής των κτιρίων. Στην παρούσα διατριβή το συνολικό κόστος λαμβάνεται ως το κόστος επισκευής δομικών και μη δομικών στοιχείων της κατασκευής. Το συνολικό αποτέλεσμα της ανάλυσης είναι η πρόταση ενός βέλτιστου συνδυασμού αριθμού γωνιών πρόσπτωσης και μεγέθους ομάδας επιταχυνσιογραφημάτων, ώστε να επιτευχθεί μείωση της επικινδυνότητας, όπως αυτή εκφράζεται στα διάφορα στάδια της ανάλυσης, σε ικανοποιητικά επίπεδα. Σημαντικό εύρημα των αναλύσεων είναι το ότι μεταγενέστερα στάδια της μεθόδου έχουν μικρότερη επιρροή της γωνίας πρόσπτωσης. Στη δεύτερη προσέγγιση, η σεισμική δράση αντιπροσωπεύεται από ένα κανονικοποιημένο φάσμα απόκρισης και η ανάλυση των κατασκευών πραγματοποιείται χρησιμοποιώντας την Ισοδύναμη Στατική μέθοδο. Η διαφορά αυτής της προσέγγισης με την προηγούμενη έγκειται στο ότι η σεισμική δράση είναι αιτιοκρατικής φύσεως και άρα απαιτείται η γωνία πρόσπτωσης που οδηγεί στην πιο δυσμενή απόκριση, αντί μιας μέσης απόκρισης προκαλούμενης από πλήθος γωνιών. Ο γραμμικός ελαστικός νόμος των υλικών και ο τμηματικός ορισμός του φάσματος απόκρισης επιτρέπουν την εξαγωγή αναλυτικών λύσεων για τον υπολογισμό της κρίσιμης γωνίας πρόσπτωσης. Αναλυτικές λύσεις εξάγονται χρησιμοποιώντας ένα κανονικοποιημένο φάσμα απόκρισης σύμφωνα με κανονιστικά κείμενα και η κρίσιμη γωνία πρόσπτωσης υπολογίζεται για συγκεκριμένες κατηγορίες κτιρίων και παραμέτρους απόκρισης. Το τελευταίο μέρος της διατριβής περιλαμβάνει μια συνοπτική παρουσίαση των προτεινόμενων μεθόδων, συνοδευόμενη από την σημασία/συμβολή τους αλλά και από πιθανές επιπλοκές κατά την εφαρμογή τους. Τέλος, επισημαίνονται οι περιορισμοί της παρούσας μελέτης, καθώς και προτάσεις για μελλοντική έρευνα και περεταίρω εξέλιξη του αντικειμένου.


Author(s):  
Khairana Ayu Shabrina ◽  
Rudi Siap Bintoro ◽  
Giman Giman

<p>Teluk Prigi merupakan perairan di pesisir Samudera Hindia yang dikelilingi oleh bentang alam tebing yang tinggi sehingga wilayah pesisir yang memiliki kondisi dinamis dapat mengakibatkan terjadinya perubahan garis pantai apabila tidak dikelola dengan baik. Maka dari itu pada penelitian ini bertujuan untuk mengetahui faktor oseanografi yang menyebabkan terjadinya perubahan garis pantai. Metode yang digunakan terdiri dari pemisahan arus, peramalan gelombang, gelombang pecah, energi gelombang dan refraksi gelombang dengan menggunakan metode menurut <em>Coastal Engineering Research Center </em>(CERC). Selain itu ekstraksi garis pantai dengan metode <em>NDWI (Normal Differential Water Index)</em>, dan analisis jenis sedimen menggunakan modul yang dikeluarkan oleh Pusjatan Balitbang PU. Faktor oseanografi yang dominan menjadi penyebab perubahan garis pantai adalah gelombang bangkitan angin yang pola gelombangnya mengalami perubahan arah yang cenderung tegak lurus pantai, selain itu arus pasang surut menjadi faktor pendukung dengan kecepatan 0,0037 m/s bergerak menuju Utara. Sehingga, kondisi garis pantai pada tahun 2003 dan 2014, 2014 dan 2018 luasan sedimentasi terbesar mencapai 28.949 m<sup>2</sup> dan 52.020 m<sup>2</sup> yang berada di Desa Prigi. Sedangkan Sedangkan lokasi abrasi pada tahun 2003 dan 2014, 2014 dan 2018 luasnya mencapai 4.204 m<sup>2</sup> dan 3.326 m<sup>2</sup>.</p>


2017 ◽  
Vol 62 (1) ◽  
pp. 102-111
Author(s):  
Abdelhalim Airouche ◽  
Hassan Aknouche ◽  
Hakim Bechtoula ◽  
Nourredine Mezouer ◽  
Abderrahmane Kibboua

Shaking table testing continues to play an important role in earthquake engineering research. It has been recognized as a powerful testing method to evaluate structural components and systems under realistic dynamic loads. Although it represents a very attractive experimental procedure, many technical challenges, which require attention and consideration, still remain. High fidelity in signal reproduction is the focus of the work presented in this paper. The main objective of this paper is to investigate the capabilities of adaptive control techniques based on Amplitude Phase Control (APC) and Adaptive Harmonic Cancellation (AHC) on the harmonic signal tracking performance of the shaking table. A series of 232 sinusoidal command waveforms with various frequencies and amplitudes were conducted on the shaking table of the laboratory of the National Earthquake Engineering Applied Research Center (CGS, Algeria). Experimental results are reported and recommendations on the use of these adaptive control techniques are discussed.


Sign in / Sign up

Export Citation Format

Share Document