scholarly journals A Survey of No-Reference No-Training Based Image Quality Assessment Techniques

Author(s):  
Piyush Joshi
2018 ◽  
Vol 37 (2) ◽  
pp. 105 ◽  
Author(s):  
Kanjar De ◽  
Masilamani V

Over the years image quality assessment is one of the active area of research in image processing. Distortion in images can be caused by various sources like noise, blur, transmission channel errors, compression artifacts etc. Image distortions can occur during the image acquisition process (blur/noise), image compression (ringing and blocking artifacts) or during the transmission process. A single image can be distorted by multiple sources and assessing quality of such images is an extremely challenging task. The human visual system can easily identify image quality in such cases, but for a computer algorithm performing the task of quality assessment is a very difficult. In this paper, we propose a new no-reference image quality assessment for images corrupted by more than one type of distortions. The proposed technique is compared with the best-known framework for image quality assessment for multiply distorted images and standard state of the art Full reference and No-reference image quality assessment techniques available. 


2020 ◽  
Vol 4 (1) ◽  
pp. 18
Author(s):  
Kinde Anlay Fante ◽  
Fetulhak Abdurahman ◽  
Mulugeta Tegegn Gemeda

<p>Image quality assessment methods are used in different image processing applications. Among them, image compression and image super-resolution can be mentioned in wireless capsule endoscopy (WCE) applications. The existing image compression algorithms for WCE employ the generalpurpose image quality assessment (IQA) methods to evaluate the quality of the compressed image. Due to the specific nature of the images captured by WCE, the general-purpose IQA methods are not optimal and give less correlated results to that of subjective IQA (visual perception). This paper presents improved image quality assessment techniques for wireless capsule endoscopy applications. The proposed objective IQA methods are obtained by modifying the existing full-reference image quality assessment techniques. The modification is done by excluding the noninformative regions, in endoscopic images, in the computation of IQA metrics. The experimental results demonstrate that the proposed IQA method gives an improved peak signal-tonoise ratio (PSNR) and structural similarity index (SSIM). The proposed image quality assessment methods are more reliable for compressed endoscopic capsule images.</p>


2011 ◽  
Vol 4 (4) ◽  
pp. 107-108
Author(s):  
Deepa Maria Thomas ◽  
◽  
S. John Livingston

2020 ◽  
Vol 2020 (9) ◽  
pp. 323-1-323-8
Author(s):  
Litao Hu ◽  
Zhenhua Hu ◽  
Peter Bauer ◽  
Todd J. Harris ◽  
Jan P. Allebach

Image quality assessment has been a very active research area in the field of image processing, and there have been numerous methods proposed. However, most of the existing methods focus on digital images that only or mainly contain pictures or photos taken by digital cameras. Traditional approaches evaluate an input image as a whole and try to estimate a quality score for the image, in order to give viewers an idea of how “good” the image looks. In this paper, we mainly focus on the quality evaluation of contents of symbols like texts, bar-codes, QR-codes, lines, and hand-writings in target images. Estimating a quality score for this kind of information can be based on whether or not it is readable by a human, or recognizable by a decoder. Moreover, we mainly study the viewing quality of the scanned document of a printed image. For this purpose, we propose a novel image quality assessment algorithm that is able to determine the readability of a scanned document or regions in a scanned document. Experimental results on some testing images demonstrate the effectiveness of our method.


2020 ◽  
Vol 64 (1) ◽  
pp. 10505-1-10505-16
Author(s):  
Yin Zhang ◽  
Xuehan Bai ◽  
Junhua Yan ◽  
Yongqi Xiao ◽  
C. R. Chatwin ◽  
...  

Abstract A new blind image quality assessment method called No-Reference Image Quality Assessment Based on Multi-Order Gradients Statistics is proposed, which is aimed at solving the problem that the existing no-reference image quality assessment methods cannot determine the type of image distortion and that the quality evaluation has poor robustness for different types of distortion. In this article, an 18-dimensional image feature vector is constructed from gradient magnitude features, relative gradient orientation features, and relative gradient magnitude features over two scales and three orders on the basis of the relationship between multi-order gradient statistics and the type and degree of image distortion. The feature matrix and distortion types of known distorted images are used to train an AdaBoost_BP neural network to determine the image distortion type; the feature matrix and subjective scores of known distorted images are used to train an AdaBoost_BP neural network to determine the image distortion degree. A series of comparative experiments were carried out using Laboratory of Image and Video Engineering (LIVE), LIVE Multiply Distorted Image Quality, Tampere Image, and Optics Remote Sensing Image databases. Experimental results show that the proposed method has high distortion type judgment accuracy and that the quality score shows good subjective consistency and robustness for all types of distortion. The performance of the proposed method is not constricted to a particular database, and the proposed method has high operational efficiency.


2013 ◽  
Vol 32 (12) ◽  
pp. 3369-3372 ◽  
Author(s):  
Ya-zhou YANG ◽  
Xiao-qing YING ◽  
Guang-quan CHENG ◽  
Dan TU

Sign in / Sign up

Export Citation Format

Share Document